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Figure 1: Various possible D7-brane embeddings in the black D3-brane geometry with temperature

increasing from left to right.

1. Introduction

The gauge/gravity duality has created a powerful framework for the study of strongly

coupled gauge theories [1 – 4]. Thermal properties of such theories are of considerable

interest both in their own right and in connection with the experimental program on heavy

ion collisions at RHIC and LHC.

In this paper, we study certain aspects of finite-temperature behaviour of strongly

coupled N = 2 super-Yang-Mills theory with dynamical quarks in Minkowski space. The

holographic description of the theory with gauge group U(Nc) and Nf hypermultiplets in

the fundamental representation (as well as one adjoint hypermultiplet) is given by the well

studied system of D3- and D7-branes. In the limit of large Nc and large ’t Hooft coupling

λ = g2
YMNc with fixed Nf, the theory is described by Nf probe D7-branes in the near-horizon

geometry of Nc D3-branes, i.e., AdS5 × S5 [5]. At finite temperature, the background

geometry contains a black hole [6]. Although the N = 2 theory is non-confining and

thus no confinement-deconfinement phase transition is expected at finite temperature, the

presence of the quark mass scale Mq leads to a first order phase transition for fundamental

matter [7]. The transition occurs at a temperature T ∼ Mq/
√

λ and is characterized by

the dissociation or ‘melting’ of the mesons, i.e., the quark-antiquark bound states.1

Our goal is to study thermal dissociation of the bound states as well as the flavour

current diffusion by computing spectral functions of mesonic operators in the framework

of gauge/gravity duality.

The thermal behaviour of the N = 2 gauge theory with fundamental matter has

recently been actively studied [8, 9, 7, 10]. The holographic description gives a simple

picture of the phase transition. If the D7-branes are sufficiently far from the event horizon

of the black hole, they are gravitationally attracted towards the horizon but their tension is

sufficient to balance this attractive force. The probe branes then lie entirely outside of the

black hole in what were denoted ‘Minkowski’ embeddings in [7, 10] — see figure 1. As the

temperature is raised, both the radial position and the energy density of the event horizon

increase. Therefore, above some critical temperature, the gravitational attraction of the

black hole overcomes the brane tension and the D7-branes are pulled into the horizon.

1Recall that for these supersymmetric field theories, the fundamental matter includes both fermions and

scalars, which we will refer to collectively as ‘quarks’.
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Figure 2: Sketch of typical spectral functions in the (a) low-temperature (Minkowski) and (b)

high-temperature (black hole) phases.

These configurations where the branes fall through the horizon are referred to as ‘black

hole’ embeddings. In between these two branches, there also exists a critical solution which

just ‘touches’ the horizon. Thermodynamic considerations show the latter is by-passed by

a first order phase transition, in which the probe branes jump discontinuously from a

Minkowski to a black hole embedding.

In the dual field theory, this phase transition is exemplified by discontinuities in var-

ious physical quantities, e.g., the quark condensate. However, the most striking feature

of the transition is found in the spectrum of the mesons. The latter correspond to ex-

citations supported on the probe branes — see, e.g., [11, 12]. In the low-temperature

or Minkowski phase, the mesons are stable (to leading order within the approximations

above) and the spectrum is discrete with a finite mass gap. In the high-temperature or

black hole phase, mesons are all destabilized and rather one finds a continuous and gap-

less spectrum of excitations.2 Accordingly, spectral functions of mesonic operators in the

low-temperature phase are characterized by δ-function peaks3 (with the decay width of

these particles and the continuum contribution of multi-particle states both suppressed by

factors of 1/Nc), whereas in the high-temperature phase spectral functions are essentially

featureless4 (figure 2). More interesting behaviour is observed when the system evolves

from the high-temperature phase into the low-temperature phase through the metastable

‘supercooled’ phase. We show that in this case the serene landscape of figure 2b is distorted

by peaks corresponding to quasiparticle excitations, and these excitations are eventually

transformed into the stable resonances shown in figure 2a.

These features of the spectral functions are controlled by the analytic structure of

the corresponding retarded correlators in the complex frequency plane. In the high-

temperature phase, the poles of the retarded correlators (with the exception of the poles

corresponding to hydrodynamic excitations) are located at a finite distance from the real

2For a discussion of thermal resonances in the context of holographic models see e.g., [13].
3A derivation of the scalar meson spectral function at T = 0 appears in appendix B.
4The temperature-dependent part of the spectral functions exhibits damped oscillations with the period

proportional to a Matsubara frequency, see section 2.3 for details.
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axis thus making the spectral function featureless. As the temperature is lowered with

respect to the quark mass scale, the poles move closer to the real axis and the spectral

functions exhibit distinct peaks. Holographically, the poles of the retarded correlators

correspond to quasinormal modes of the gravitational background [14, 15]. Numerical

investigation of the full quasinormal spectrum of the D3-D7 system faces certain techni-

cal difficulties. In this paper we focus on computing the spectral functions for which the

numerical methods are reliable.

In addition to characterizing quasiparticle excitations of a thermal system, spectral

functions also carry information about the medium’s transport properties. Adapting tech-

niques from [16 – 18], we compute the quark diffusion constant as a function of the param-

eter Mq/T in the high-temperature phase, and attempt to give a qualitative description of

its dependence on the coupling for the full range of temperatures.

Thermal dissociation of mesons as well as transport properties of the quark-gluon

plasma can be studied in lattice QCD with the help of indirect methods such as the

maximal entropy method [19 – 28]. These studies suggest, in particular, that mesons survive

as relatively well-defined resonances at temperatures well above Tc (2 − 3Tc). While the

uncertainties of these lattice methods remain large, the holographic approach used in this

paper serves as a source of quantitative and often analytically exact results for qualitatively

similar finite-temperature models.

An overview of the paper is as follows: in section 2 we review properties of thermal

spectral functions in field theory and outline methods of computing spectral functions from

dual gravity. These methods are illustrated by a simple example of computing the spec-

tral function and diffusion constant for R currents in N = 4 SYM. For vanishing spatial

momentum, the correlator, quasinormal spectrum, and the spectral function can be com-

puted analytically. In section 3 we introduce the D3/D7-brane framework and review the

D7-brane embeddings and thermodynamics. In section 4, we turn to the calculation of

the spectral function for various mesonic operators in the high temperature phase of the

N = 2 gauge theory. We consider a vector operator in section 4.1. In the special case

of vanishing quark mass, we determine the spectral function analytically. In general, for

arbitrary quark mass, the vector spectral function is computed numerically. In section 4.2,

we turn to spectral functions for scalar and pseudoscalar operators, which are again bi-

linear in the fundamental fields. Section 5 presents three independent computations of

the diffusion constant for ‘light’ quarks, using the membrane paradigm method [17], the

Green-Kubo formula, and by calculating the lowest quasinormal frequency for the vector

field on the D7-brane. Section 6 contains discussion and observations about our results.

Some details of our analysis are relegated to appendices: appendix A provides a review of

the holographic dictionary relating the D7-brane worldvolume fields to their dual opera-

tors in the gauge theory; appendix B contains a derivation of the scalar spectral function

at T = 0; appendix C provides a derivation of the high frequency asymptotics for the

spectral functions; appendix D gives a partial analysis of the quasinormal modes for the

pseudoscalar and scalar excitations; and finally, appendix E extends the computation of the

quark diffusion constant, described in section 5.1, to the holographic framework described

by a Dq-brane probe in a near-extremal Dp-brane throat.
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2. Prelude: spectral functions and holography

In general, finite-temperature correlation functions of conserved charge densities carry in-

formation about a medium’s transport properties and quasiparticle excitations. This in-

formation is given, roughly, by the poles and the corresponding residues of the correlators,

or, equivalently, by their spectral functions. Recently the study of these objects has been

used to great effect in a holographic framework to study the thermal properties of various

strongly coupled field theories [40]. In a holographic setting, the spectral functions are

often easier to compute than the full correlators on the gravity side. According to the

holographic dictionary, the poles are determined by the quasinormal spectrum of a dual

bulk field fluctuation, whereas the spectral function is given by the imaginary part of the

retarded correlator which is independent of the radial coordinate [15, 29]. In this section,

we combine the necessary tools for computing the spectral functions from dual gravity and

analyzing their properties, and then illustrate this technique using the simple example of

strongly coupled N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory at large Nc. In

this case, the R-current spectral function has been analyzed elsewhere [29, 30, 13] but we

present a new analytic result (for vanishing spatial momentum).

2.1 Field theory picture

A thermal spectral function of an operator O is defined as5

R(ω,q) =

∫

d4x e−iωt+iqx〈[O(t,x),O(0)]〉 , (2.1)

where the correlator is computed in thermal equilibrium at a temperature T . The spectral

function is proportional to the imaginary part of the retarded correlator,

R(ω,q) = −2 Im GR(ω,q) , (2.2)

where

GR(ω,q) = −i

∫

d4x e−iωt+iqx θ(x0)〈[O(t,x),O(0)]〉 . (2.3)

If O is an operator of a density of a conserved charge in a rotation invariant theory, the

retarded thermal two-point function is determined by two independent scalar functions.

In Fourier space, the correlator can be decomposed into the transverse and longitudinal

parts [29]

GR
µν(ω, q) = P T

µν ΠT (ω, q) + PL
µν ΠL(ω, q) , (2.4)

where the index structure is absorbed into two mutually orthogonal projectors P T
µν and

PL
µν . Without loss of generality we can take the spatial momentum oriented along the x3

direction, so that kµ = (−ω, 0, 0, q), with k2 = −ω2 + q2. Then one has [29]

GR
x1x1(k) = GR

x2x2(k) = ΠT (ω, q) . (2.5)

5Our metric convention is (−,+, +, +). We assume translation invariance to be an unbroken symmetry

of the theory.
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Other components of the current-current correlator are

GR
tt(k) = − q2

q2 − ω2
ΠL(ω, q) , (2.6)

GR
tx3(k) = − ωq

q2 − ω2
ΠL(ω, q) , (2.7)

GR
x3x3(k) = − ω2

q2 − ω2
ΠL(ω, q) . (2.8)

In the long-time, long-wavelength limit (i.e., for ω/T ≪ 1, q/T ≪ 1) the functions ΠT (ω, q)

and ΠL(ω, q) have a universal behaviour dictated by hydrodynamics: ΠT (ω, q) is nonsin-

gular as a function of the frequency, while ΠL(ω, q) has a simple pole at

ω = −iDq2 , (2.9)

where D is the charge diffusion constant.

The rotation invariance implies that in the limit of vanishing spatial momentum at fixed

ω > 0 the two scalar functions coincide: ΠT (ω, 0) = ΠL(ω, 0) = Π(ω). Correspondingly, at

q = 0 one can define

R(ω) ≡ Rx1x1(ω, 0) = Rx2x2(ω, 0) = Rx3x3(ω, 0) . (2.10)

The Green-Kubo formula relates the diffusion constant to the zero-frequency limit of the

spectral function R(ω):

D Ξ = lim
ω→0

1

2ω
R(ω) . (2.11)

Here Ξ is the charge susceptibility. The susceptibility is determined by the thermodynamics

of the system in a grand canonical ensemble,

Ξ =
∂n(µ)

∂µ

∣

∣

∣

∣

∣

µ=0

, (2.12)

where n(µ) is the charge density, µ is the corresponding chemical potential.

In addition to hydrodynamic poles, the retarded correlators may have other singulari-

ties located in the lower half-plane of complex frequency. Assuming one of these singular-

ities is a simple pole,

GR ∼ 1

ω − Ω(q, α) + iΓ(q, α)
,

where α represents a set of parameters relevant for a particular theory, for the spectral

function one has

R(ω) ∼ Γ

(ω − Ω)2 + Γ2
.

Thus in the vicinity of ω = Ω, the spectral function has a peak characterized by a width

∼ Γ and a height (‘lifetime’) ∼ 1/Γ. The peak has a quasiparticle interpretation if Γ ≪ Ω.

The spectral function R(ω) also has a characteristic form in the high frequency limit.

This behaviour is determined by the leading short-distance singularity

lim
(t2−x2)→0

〈O(t,x)O(0)〉 =
A

|t2 − x2|∆ + · · · , (2.13)

– 6 –
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where ∆ denotes the dimension of the operator O and A is a dimensionless constant. A

Fourier transform then leads to the following contribution to the spectral function

R(ω) ∼ Aω2∆−4 . (2.14)

2.2 Gravity picture

In the dual gravity picture, the conserved current Jµ couples to a boundary value of the

gauge field fluctuation Aµ propagating in a specific gravitational background. One can

form two gauge-invariant combinations of the fluctuation whose equations of motion (sup-

plemented with appropriate boundary conditions) contain (in the limit where the gravity

description is valid) full information about the functions ΠT (ω, q) and ΠL(ω, q) introduced

in section 2.1. These gauge invariant combinations are the transverse and longitudinal

(with respect to a chosen direction of the spatial momentum) components ET , EL of the

electric field in curved space [29]. Quasinormal spectra of the fluctuations ET and EL

determine the position of the poles of ΠT (ω, q) and ΠL(ω, q) in the complex ω plane.

2.3 A simple example: spectral function of R currents in N = 4 SYM

Correlators of R-currents in strongly coupled N = 4 SU(Nc) supersymetric Yang-Mills

(SYM) theory at large Nc were previously studied by means of the AdS/CFT correspon-

dence both at zero [31, 32] and finite temperature [16, 33, 29, 30, 13].

In thermal N = 4 SYM, the retarded two-point correlators of the SU(4)R R-symmetry

currents Ja
µ are determined by two independent scalar functions,6 ΠT (ω, q) and ΠL(ω, q).

The holographic dual of thermal N = 4 SYM in flat space is well known. The su-

pergravity background describing the decoupling limit of Nc black D3-branes is (see, e.g.,

[4])

ds2 =
r2

L2

(

−f(r)dt2 + dx2
)

+
L2

r2

(

dr2

f(r)
+ r2dΩ2

5

)

, C0123 = − r4

L4
, (2.15)

where f(r) = 1−r4
0/r

4 and the dilaton is constant. The horizon lies at r = r0 and the radius

of curvature L is defined in terms of the string coupling constant gs and the string length

scale ℓs as L4 = 4π gsNc ℓ4
s . According to the duality, originally proposed by Maldacena [1],

type IIB string theory on these backgrounds is dual to four-dimensional N = 4 super-

Yang-Mills (SYM) SU(Nc) gauge theory. The holographic dictionary between the theories

relates the Yang-Mills and string coupling constants g2
YM = 2πgs. The temperature of the

gauge theory is equivalent to the Hawking temperature of the black hole horizon:

T =
r0

πL2
. (2.16)

In the supergravity approximation (corresponding to the limit Nc → ∞, g2
YMNc → ∞ in

the field theory), full information about functions ΠT (ω, q) and ΠL(ω, q) can be obtained by

6In an equilibrium state without chemical potentials for the R-charges, the correlation function of R

currents ja
µ has the form Cab

µν = δabCµν(x). In all expressions, the factor δab is omitted.
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solving the linearized Maxwell equations for the bulk electric field components ET , EL [29]

E′′
T +

f ′

f
E′

T +
w2 − q2f

(1 − x̄)f2
ET = 0 , (2.17)

E′′
L +

w2f ′

f(w2 − q2f)
E′

L +
w2 − q2f

(1 − x̄)f2
EL = 0 . (2.18)

where ′ indicates a derivative with respect to x̄ ≡ 1 − r2
0/r

2. We have also introduced the

dimensionless quantities

w =
ω

2πT
, q =

q

2πT
. (2.19)

An analysis of eqs. (2.17), (2.18) including the perturbative solution for small w, q can be

found in [29]. Here we shall focus on a particular case of vanishing spatial momentum that

admits analytic solution for arbitrary frequency.

For q = 0, the components ET = EL ≡ E obey the same equation

E′′ +
f ′

f
E′ +

w2

(1 − x̄)f2
E = 0 . (2.20)

Writing

E(x̄) = x̄−iw/2 (2 − x̄)−w/2 F (x̄) , (2.21)

where F (x̄) is by construction regular at the horizon x̄ = 0, we obtain the equation

F ′′ +
2iw + 2(x̄ − 1) − (1 + i)wx̄

(x̄ − 2)x̄
F ′ +

w((1 + i)(1 − x̄) − iw((1 + 2i) − x̄))

2x̄(x̄ − 1)(x̄ − 2)
F = 0 . (2.22)

Two linearly independent solutions of eq. (2.22) are written in terms of the Gauss hyper-

geometric function

F1(x̄) = (1 − x̄)
(1+i)w

2 2F1

(

1 − (1 + i)w

2
,−(1 + i)w

2
; 1 − iw;

x̄

2(x̄ − 1)

)

, (2.23)

F2(x̄) = x̄iw (1 − x̄)
(1−i)w

2 2F1

(

1 − (1 − i)w

2
,−(1 − i)w

2
; 1 + iw;

x̄

2(x̄ − 1)

)

. (2.24)

To compute the retarded correlators, we need a solution obeying the incoming wave bound-

ary condition at x̄ = 0 [15]. The correct solution is thus given by eq. (2.23).

The retarded correlation functions can be computed from the boundary supergravity

action using the Lorentzian AdS/CFT prescription [15]. For vanishing spatial momentum,

the result reads [29, 13]

Π(ω) =
N2

c T 2

8
lim
x̄→1

E′(x̄)

E(x̄)
. (2.25)

Substituting the solution (2.23) into eq. (2.25) we obtain

Π(ω) =
N2

c T 2

8

{

iw + w2

[

ψ

(

(1 − i)w

2

)

+ ψ

(

−(1 + i)w

2

)]}

, (2.26)

where ψ(z) is the logarithmic derivative of the gamma-function. The spectral function is

given by

R(ω) = −N2
c T 2

4
Im

{

iw + w2

[

ψ

(

(1 − i)w

2

)

+ ψ

(

−(1 + i)w

2

)]}

. (2.27)
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Using the property of the digamma function ψ(z)−ψ(−z) = −π cot πz − 1/z, the spectral

function (2.27) can be written in a more compact form

R(ω) =
N2

c T 2

4

πw2 sinhπw

cosh πw − cos πw
. (2.28)

These analytic results for the retarded Green’s function (2.26) and the spectral func-

tion (2.27), (2.28) are new and allow their various features to be easily examined. The

asymptotics of the spectral function for large and small frequency can be easily computed

R(ω) =
πN2

c T 2w2

4

(

1 + 2e−πw cos πw + · · ·
)

, w → ∞ , (2.29)

R(ω) =
N2

c T 2w

4

(

1 +
π2w2

6
+ · · ·

)

, w → 0 . (2.30)

As expected, the high frequency asymptotic coincides with the zero-temperature result for

the spectral function [15]

RT=0(ω) =
N2

c ω2

16π
. (2.31)

The retarded correlator (2.26) is a meromorphic function of w with poles located at7

w = ±n − i n , n = 1, 2, . . . . (2.32)

The position of the poles coincides with the quasinormal spectrum of the fluctuations E(x̄)

determined by the Dirichlet condition E(1) = 0. For each pole, the imaginary part has

the same magnitude as the real one, and thus none of the singularities can be given a

‘quasiparticle’ interpretation. Indeed, as shown in figure 3a, the spectral function is quite

featureless, although not monotonic: its finite-temperature part, R(ω)−RT=0(ω), exhibits

damped oscillations reflecting the diminishing influence of the sequence of poles receding

farther and farther away from the real axis in the complex frequency plane (figure 3b).

The oscillatory behaviour of the finite-temperature part of the spectral function is evident

from eq. (2.29).

Using the Green-Kubo formula (2.11) and the low frequency limit (2.30) of the spectral

function at zero spatial momentum one finds the product of the R-charge diffusion constant

and the charge susceptibility

DΞ =
N2

c T

16π
. (2.33)

The susceptibility is determined from thermodynamics according to eq. (2.12). The depen-

dence of the charge density on the chemical potential was found in [34]. For small µ, one

has

n(µ) =
N2

c T 2

8
µ + · · · , (2.34)

and thus from eq. (2.12), Ξ = N2
c T 2/8. We conclude that the R charge diffusion constant

is given by D = 1/2πT , in agreement with the result of an earlier calculation [16], where

the value of D was determined from the hydrodynamic pole of the longitudinal part of the

correlator at small but nonvanishing spatial momentum.

7The exact location of the poles was previously found in [33] using the continued fraction method.
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Figure 3: The N = 4 SYM R-current spectral function at zero spatial momentum R(ω) (a) and

its finite temperature part R(ω) − N2

c ω2/16π (b) in units of N2

c T 2/2 as a function of w = ω/2πT .

3. Adding flavour: D7-brane embedding and thermodynamics

All fields in the N = 4 SYM theory transform in the adjoint representation of the SU(Nc)

gauge group. Fields transforming in the fundamental representation of the gauge group can

be introduced in the gravity dual by inserting a second set of D-branes in the supergravity

background [5]. In particular, we consider the decoupling limit of the intersection of Nc

black D3-branes and Nf D7-branes as described by the array:

0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D7 × × × × × × × ×

(3.1)

The dual field theory is now an N = 2 gauge theory consisting of the original SYM theory

coupled to Nf fundamental hypermultiplets. Taking the decoupling limit with Nf ≪ Nc,

the D7-branes may be treated as probes in the black D3-brane geometry (2.15). The

holographic framework has been used extensively to study the thermal properties of the

N = 2 gauge theory at large Nc [8, 9, 7, 10]. In particular, it was found that the fundamental

matter undergoes a phase transition characterised by the dissociation of the mesonic bound

states, as will be reviewed below.

Following [7, 10], it is helpful to introduce a dimensionless radial coordinate ρ, related

to the coordinate r via

(r0ρ)2 = r2 +
√

r4 − r0
4 . (3.2)

In this case, the metric for the black D3-brane geometry (2.15) becomes

ds2(g) =
1

2

(r0ρ

L

)2
[

−f2

f̃
dt2 + f̃dx2

]

+
L2

ρ2

[

dρ2 + ρ2dΩ2
5

]

, (3.3)

where f(ρ) = 1 − 1/ρ4, f̃(ρ) = 1 + 1/ρ4 and

dΩ2
5 = dθ2 + sin2 θdΩ3 + cos2 θ dφ2 . (3.4)
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The worldvolume directions of the D3-branes by the coordinates {t, xi}. The probe D7-

branes fill these coordinates, as well as wrapping the S3 in (3.4) and extending in the radial

direction ρ. In general then, the D7-brane embedding is specified by giving its profile in the

angular directions, θ and φ. For simplicity, we fix φ = 0 for our background embeddings.

Then requiring translational symmetry in the 0123-space and rotational symmetry in the

4567-directions motivates us to consider θ = θ(ρ). In fact, it is more convenient to work

with χ(ρ) ≡ cos θ(ρ) rather than θ. The induced metric on the D7-branes is then

ds2 =
1

2

(r0ρ

L

)2
[

−f2

f̃
dt2 + f̃ dx2

]

+

(

L2

ρ2
+

L2χ̇2

1 − χ2

)

dρ2 + L2(1 − χ2)dΩ2
3 , (3.5)

where χ̇ = dχ/dρ. The D7-brane action follows as

SD7

N = −
∫

dρ

(

1 − 1

ρ8

)

ρ3(1 − χ2)
√

1 − χ2 + ρ2χ̇2 , (3.6)

where the normalisation constant is N = NfTD7r0
4Ω3/4T with Ω3 = 2π2 and TD7 =

2π/(2πℓs)
8gs. The equation of motion for χ(ρ) is then

∂ρ

[

(

1 − 1

ρ8

)

ρ5(1 − χ2)χ̇
√

1 − χ2 + ρ2χ̇2

]

+ ρ3

(

1 − 1

ρ8

)

3χ(1 − χ2) + 2ρ2χχ̇2

√

1 − χ2 + ρ2χ̇2
= 0 (3.7)

which implies that the field χ asymptotically approaches zero as

χ =
m

ρ
+

c

ρ3
+ · · · . (3.8)

The operator dual to χ is the supersymmetric extension of the quark mass term, defined

in (A.2). Holography then relates the dimensionless constants m and c to the quark mass

and condensate via (A.8) and (A.9). Eq. (A.8) implies the relationship m = M̄/T between

the dimensionless quantity m, the temperature T and the mass scale

M̄ =
2Mq√

λ
=

Mgap

2π
. (3.9)

Here Mgap is the meson mass gap in the D3/D7 brane theory at zero temperature [11].

In the limits of large and small m it is possible to find approximate analytic solutions

for the embeddings — see [10]. However, for arbitrary m we numerically integrated (3.7)

— see [7, 10]. In the present case, we are studying the high temperature phase and so we

are interesting in the black hole embeddings, which are found by imposing the following

boundary conditions on the event horizon ρmin = 1: χ = χ0 and dχ/dρ = 0 for 0 ≤ χ0 < 1.

In order to compute the constants m, c corresponding to each value of χ0, we fitted the

numerical solutions to the asymptotic form (3.8).

3.1 Thermodynamics of the brane

As described above, introducing D7-brane probes into the black D3-brane background

corresponds to adding dynamical quarks to the gauge theory. The resulting theory has

a rich spectrum of quark-antiquark bound states or mesons. As these mesons are dual
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to strings with both ends on D7-branes, the mesons can be studied by examining the

fluctuations of the D7-branes, e.g., the spectrum of the lowest-lying mesons can be found

by computing the spectrum of fluctuations of the worldvolume fields on the D7-branes —

see e.g., [11, 12, 35]. At finite temperature, there are two classes of embeddings for the D7-

branes and a first-order phase transition that goes between these classes. For temperatures

below the phase transition T < Tfund, the D7-branes close off above the black hole horizon

(Minkowski embeddings), while above the transition (T > Tfund), the D7-branes extend

through the horizon (black hole embeddings). In the gauge theory, the most striking feature

of this transition is the change in the meson spectrum [7, 10]. Below the phase transition,

the spectrum of mesons has a mass gap and is discrete while above, the mesonic excitations

are unstable and are characterised by a discrete spectrum of quasinormal modes [36].

The above phase transition has been studied in detail in [8, 9, 7, 10] and we review a few

salient facts here needed for later discussions. The Minkowski and black hole embeddings

are separated by a critical solution that just touches the black hole horizon, as depicted in

figure 1. Plotting the quark condensate c as a function of m = M̄/T reveals that c is not a

single-valued function of m and that the two families of solutions spiral around the critical

solution — see figure 4 of [10]. The physical solution corresponds to the embedding which

minimizes the free energy density of the D7-branes.

A plot of the free energy F as a function of temperature near the phase transition

is given in figure 4 and this shows the ‘swallow tail’ which is typical of first order phase

transitions. Starting from low temperatures, we follow the blue dotted line depicting

Minkowski embeddings to the point where this line intersects the solid red line for black

hole embeddings. The phase transition occurs at this point, and the physical embedding

jumps from a Minkowski embedding, a finite distance from the black hole horizon, to the

black hole embedding with χ0 ≃ 0.94. At this temperature, the quark condensate, entropy,

and energy density each exhibit a finite discontinuity, indicating that the phase transition

is first order.

It is interesting to ask whether the D7-brane embeddings beyond the phase transition,

e.g., between A1 and A2 on the black hole branch, still represent metastable configurations.

If so, the corresponding states of the gauge theory might be accessed by a process analogous

to ‘super-cooling’ the system. Examining the specific heat cV = ∂E/∂T reveals that cV

becomes negative as the curves (e.g., of the condensate, entropy or energy density as a

function of T ) spiral around the critical solution, indicating that the system should be

unstable for these embeddings. In particular, the specific heat first becomes negative at

A2 on the black hole branch and A3 on the Minkowski branch. Examining the scalar

fluctuation spectrum of the D7-brane Minkowski embeddings (corresponding to the meson

spectrum in the low temperature phase of the dual gauge theory) reveals that a dynamical

instability appears precisely at A3: At the first kink in the free energy, the lowest-lying

scalar mode on the D7-branes becomes tachyonic. In fact, at the second kink, the second

lowest-lying scalar mode becomes tachyonic and new tachyonic modes seem to appear at

each such kink [10].

Hence the behaviour on the Minkowski branch is clear: continuing along the Minkowski

branch past the phase transition, the system exhibits a dynamical instability, which
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Figure 4: The free energy F/NT versus temperature T/M̄ for a D7-brane in the black D3-brane

geometry where N = λNfNcT
3/32. The blue dashed (red continuous) curves correspond to the

Minkowski (black hole) embeddings. The values of χ0 for certain black hole D7-brane embeddings

are noted for future reference. The phase transition is indicated by the vertical dashed line labelled

χ0 = 0.94.

matches the thermodynamic prediction, at the point A3 in figure 4, which is the first

kink in the free energy on the Minkowski branch and corresponds to the first turn-around

in the spiral. Hence while these configurations remain metastable between A1 and A3, all

of the embeddings beyond A3 are simply unstable. In fact, more and more instabilities

appear as the embeddings approach the critical solution, as described above.

On the black hole branch we expect similar phenomena. At point A2 in figure 4, the

specific heat becomes negative, indicating a thermodynamic instability. Though the full

calculation of the quasinormal spectrum remains to be performed — preliminary results

appear in [36] — we will see in section 4.2.2 that the scalar spectral function provides

evidence that new tachyonic modes again appear at each turn in the spiral along the black

hole branch. Appendix D presents a complementary analysis which also supports the

appearance of tachyons in the quasinormal spectrum of the scalar fluctuations. Hence we

expect that only the configurations between A1 and A2 on the black hole branch represent

metastable states of the gauge theory.

4. Spectral functions for excitations of fundamental fields

In this section, we compute spectral functions for excitations of fundamental fields in the

high temperature phase of the theory, T > Tfund, by studying vector and scalar fluctuations

of the D7-brane probes. The details of the holographic dictionary relating the fluctuations

of the probe branes to the hypermultiplet operators of the gauge theory are described in

appendix A. In each case, we begin by considering modes that are constant on the internal
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S3 but then extend the analysis to include modes with nontrivial angular momentum on

this space. The latter modes are dual to higher dimension operators which are ‘charged’

under the global SO(4) symmetry, as outlined in appendix A.

4.1 Vector

In the gravity dual, the vector is one of several possible excitations of the worldvolume

gauge field on the D7-branes. These modes are characterised as having only At,x,y,z nonzero

with Aρ = AS3 = 0 [12]. The holographic dictionary outlined in appendix A reveals that

the vector is dual to the current Jµ
q which is the conserved current corresponding to the

diagonal U(1)q of the global flavour symmetry.

The full action for the gauge fields on a D7-brane contains the Dirac-Born-Infeld (DBI)

action plus a Wess-Zumino term, however, for gauge fields with Aρ = AS3 = 0 only the

DBI portion of the action is relevant. Further since we only study linearized fluctuations

about the background, the gauge field action is only needed to quadratic order, which is

simply

S = −(2πℓ2
s )

2

4
TD7Nf

∫

d8σ
√−g gcdgefFfcFde , (4.1)

where the Latin indices run over the D7 worldvolume directions and gab is the induced

metric on the D7-brane given in (3.3).

Assuming that the gauge field is independent of the coordinates on the S3, we can

easily reduce (4.1) to an effective action in five-dimensions. The induced metric in these

directions is

ds2(g̃) =
1

2

(r0ρ

L

)2
[

−f2

f̃
dt2 + f̃dx2

3

]

+
L2

ρ2

(

1 − χ2 + ρ2χ̇2

1 − χ2

)

dρ2 , (4.2)

and so the determinant of the full induced metric (3.3) can be written as

√−g =

√−g̃

g2
eff(ρ)

√

h3 ,
1

g2
eff(ρ)

≡ L3(1 − χ2)
3
2 . (4.3)

Here h3 is the determinant of the metric on the S3 of unit radius and geff is a radially-

dependent ‘effective coupling’. Integrating over the three-sphere, the action (4.1) reduces

to

S = −(2πℓ2
s )

2

4
Ω3TD7Nf

∫

dtd3xdρ
√

−g̃
FαβFαβ

g2
eff (ρ)

, (4.4)

where α, β = t, x, y, z, ρ. Of course, Maxwell’s equations follow as

∂α

(√−g̃

g2
eff

Fαβ

)

= 0. (4.5)

Using the equation of motion (4.5), the action (4.4) can be written as

S = −(2πℓ2
s )

2

2
TD7Ω3Nf

∫

dx4dρ ∂α

[√−g̃

g2
eff

AβFαβ

]

. (4.6)
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Retaining only the terms at the ρ-boundaries and using the metric (4.2), this becomes

S = −(2πℓ2
s )

2

2
TD7Ω3

r0
2

2
Nf

∫

d4x

[

fρ3(1 − χ2)2
√

1 − χ2 + ρ2χ̇2

(

Ai∂ρAi −
f̃2

f2
At∂ρAt

)]ρ→∞

ρ→1

, (4.7)

where i is summed over x, y, z. Following [29], we take the Fourier transform of the gauge

field and with kµ = (−ω, q, 0, 0),

Aµ =

∫

dω dq

(2π)2
e−iωt+iqxAµ(k, ρ) (4.8)

(with Aρ = 0, as discussed earlier), and the boundary action can be written as

S = −NfNcT
2

24

∫

dωdq

(2π)2

[

fρ3(1 − χ2)2
√

1 − χ2 + ρ2χ̇2

(

Ai(ρ,−k)∂ρAi(ρ, k) − f̃2

f2
At(ρ,−k)∂ρAt(ρ, k)

)]ρ→∞

ρ→1

.

We construct gauge-invariant components of the electric field: Ex ≡ qAt + ωAx and

Ey,z ≡ ωAy,z. Note that in the language of section 2, Ex corresponds to the longitudinal

electric field EL while Ey,z correspond to the transverse electric field ET . With these

gauge-invariant fields, the action can be rewritten as (using eq. (4.15) below)

S = −NfNcT
2

24

∫

dωdq

(2π)2

[

fρ3(1 − χ2)2
√

1 − χ2 + ρ2χ̇2

(

Ex(ρ,−k)∂ρEx(ρ, k)

ω2 − q2f2/f̃2
(4.9)

− 1

ω2
(Ey(ρ,−k)∂ρEy(ρ, k) + Ez(ρ,−k)∂ρEz(ρ, k))

)]ρ→∞

ρ→1

.

Focusing on the longitudinal electric field, we write

Ex(k, ρ) = E0(k)
Ek(ρ)

Ek(ρ∞)
, (4.10)

where it is understood that eventually the limit ρ∞ → ∞ will be taken. We can then define

the flux factor for Ex as [15]:

F = −NfNcT
2

24

[

fρ3(1 − χ2)2
√

1 − χ2 + ρ2χ̇2

E−k(ρ)∂ρEk(ρ)

(ω2 − q2f2/f̃2)E−k(ρ∞)Ek(ρ∞)

]

. (4.11)

The usual AdS/CFT prescription tells us to evaluate it at the boundary ρ → ∞ to find

the retarded Green’s function for Ex [15]:

G = −2F =
NfNcT

2

23

[

fρ3(1 − χ2)2
√

1 − χ2 + ρ2χ̇2

E−k(ρ)∂ρEk(ρ)

(ω2 − q2f2/f̃2)E−k(ρ∞)Ek(ρ∞)

]

ρ→∞

. (4.12)

The retarded Green’s function for Ax is the above expression times ω2, which for q = 0

gives

Gxx =
NfNcT

2

8

[

ρ3 ∂ρEk(ρ)

Ek(ρ)

]

ρ→∞

(4.13)
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upon using the asymptotic expansion (3.8) for χ. Of course, this is the analogue of the

expression in eq. (2.25) for the example discussed in section 2.3. The spectral function for

q = 0 is then

Rxx(ω, 0) = −2ImGxx(ω, 0) = −NfNcT
2

4
Im

[

ρ3 ∂ρEk(ρ)

Ek(ρ)

]

ρ→∞

. (4.14)

In order to evaluate the spectral function, we must solve the equations of motion (4.5).

For Aρ = AS3 = 0 and Aµ an s-wave on the S3, the equations for At and Ax are

g̃ttωȦt − g̃xxqȦx = 0 , (4.15)

∂ρ

(√−g̃

g2
eff

g̃ttg̃ρρȦt

)

−
√−g̃

g2
eff

g̃ttg̃xx
(

ωqAx + q2At

)

= 0 , (4.16)

∂ρ

(√−g̃

g2
eff

g̃ρρg̃xxȦx

)

−
√−g̃

g2
eff

g̃ttg̃xx
(

ωqAt + ω2Ax

)

= 0 . (4.17)

Given the longitudinal field Ex = qAt+ωAx as above, the system of equations (4.15)-(4.17)

yields

Ëx +

[

4ω2f̃ ḟ

f(ω2f̃2 − q2f2)
+ ∂ρ ln

(√−g̃

g2
eff

g̃ttg̃ρρ

)

]

Ėx +
g̃xx

g̃ρρ

(

f̃2

f2
ω2 − q2

)

Ex = 0. (4.18)

Substituting for the induced metric in (4.18), the equation of motion for Ex is:

Ëx +

[

4w2f̃ ḟ

f(w2f̃2 − q2f2)
+

f

f̃2

√

1 − χ2 + ρ2χ̇2

ρ3(1 − χ2)2
∂ρ

(

f̃2ρ3(1 − χ2)2

f
√

1 − χ2 + ρ2χ̇2

)]

Ėx (4.19)

+8
1 − χ2 + ρ2χ̇2

ρ4f̃(1 − χ2)

(

f̃2

f2
w2 − q2

)

Ex = 0 .

Here we use the dimensionless frequency w and momentum q are defined in eq. (2.19).

Returning to the transverse electric field ET = Ey,z, the equation of motion is

∂ρ

[√−g̃

g2
eff

gρρgyy∂ρET

]

−
√−g̃

g2
eff

gyy
(

ω2gtt + q2gxx
)

ET = 0 . (4.20)

For vanishing spatial momentum q = 0, this equation and that for Ex (eq. (4.19)) coin-

cide. Thus, as discussed in section 2, for q = 0, the spectral functions are identical i.e.,

Rxx(ω, 0) = Ryy(ω, 0) = Rzz(ω, 0) and we denote these by R(ω) henceforth.

We proceed to compute the spectral function R(ω) by solving the equation of mo-

tion (4.19) with q = 0. First we note that the case of massless quarks corresponds to

the equatorial embedding of the D7-branes for which χ(ρ) = 0. Hence g2
eff in eq. (4.4)

is constant and the induced metric (4.2) matches precisely that of the AdS5 black hole.

Hence except for an overall normalization, the calculation of R(ω) is identical to that in the

example discussed in section 2.3 and so in this case, it is possible to solve (4.19) exactly.

We leave this exercise for the following subsection as it is a special case of the general

analysis of charged vector operators, for which the case Mq = 0 is also exactly soluble.
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For massive quarks (m 6= 0), the embedding equation (3.7) must be solved numerically

and hence it was necessary to numerically integrate (4.19) to solve for Ex. Near the

horizon (ρ → 1), eq. (4.19) implies that Ex ∼ (ρ − 1)±iw. Choosing the negative sign

enforces incoming wave boundary conditions at the horizon. Thus, for each choice of quark

mass, we solved (4.19) numerically, taking Ex(ρ) = (ρ − 1)−iwF (ρ) where F (ρ) is regular

at the horizon with F (1) = 1 and ∂ρF (1) = iw/2 for real w.

The spectral function was evaluated using the numerical solutions for Ex and eq. (4.14).

In the high frequency limit, the spectral function asymptotes to NfNcω
2/4π – see ap-

pendix C. Figure 5 provides plots of the finite-temperature part of the spectral function,8

R(ω)−NfNcω
2/4π, for various D7-brane embeddings, specified by χ0 = χ(ρ = 1) (or equiv-

alently by m). The upper plot shows the finite temperature part of the spectral function

for temperatures above the phase transition: χ0 = 0 (m = 0), χ0 = 0.1 (m = 0.1667),

χ0 = 0.5 (m = 0.8080), χ0 = 0.8 (m = 1.2026), χ0 = 0.94 (m = 1.3059) – the last of these

corresponds to T/Mq for the phase transition. Note that the χ = 0 and χ0 = 0.1 lines

are virtually coincident. The lower plot shows the finite temperature part of the spectral

function for values of χ0 corresponding to black hole embeddings after the phase transition,

i.e., along the lines A1 to A2 and A2 to A3 on the black hole branch in figure 4. Note

that as χ0 approaches 1, the finite temperature part of the spectral function displays high

peaks. It is interesting to note that as χ0 → 1, as well as growing sharper, the peaks in

the spectral function become more closely spaced and move towards lower frequencies. For

example, the peaks in the χ0 = 0.9999 line are much more closely spaced than those in the

χ0 = 0.99 line.

It is interesting to compare the positions of these peaks to the masses of the lowest

vector mesons in the Minkowski phase [37]. The vertical dotted line at w ≃ 0.776 represents

the mass of the lowest vector meson for a Minkowski embedding very close to the critical

embedding. It seems that the position of the first peak of the spectral function is converging

to a very similar value as χ0 → 1 — certainly for χ0 = 0.9999, the first peak is very close

to w ≃ 0.776. The second vertical dotted line at w ≃ 0.857 represents the mass of the

first excited vector meson (n = 1, ℓ = 0) as the Minkowski embedding approaches the

critical solution. In this case, it is likely that the second peak in the spectral function is

approaching this value, but certainly it is not converging on this position as rapidly as the

first peak. From the supergravity perspective, it is natural that these peaks are converging

on the Minkowski phase spectrum, as described above, because near the critical embedding

both the Minkowski and black hole embeddings of the D7-brane will be nearly identical

except for very near the event horizon. The small horizon that still appears in the induced

geometry of the near-critical black hole embeddings ensures, however, that there is a small

imaginary frequency component of the quasinormal fluctuations.

Note that in the Minkowski phase, w ≃ 0.98 corresponds to the mass of the lowest

vector meson just at the phase transition. This is significantly above both masses quoted

above near the critical solution — recall that in general the meson masses decreased as

8In using the wording ‘finite temperature part of the spectral function,’ we are adopting the language

used previously for N = SYM in section 2.3 and ref. [29]. In the present case, this refers to the spectral

function minus its high frequency asymptotics.
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Figure 5: The finite temperature part of the vector spectral function, i.e., R − NfNcω
2/4π, in

units of NfNcT
2/4, versus w = ω/2πT for various values of χ0 corresponding to different values

of m = M̄/T . The upper plot shows values of χ0 corresponding to temperatures above the phase

transition while the lower plot is for values of χ0 past the transition. The vertical dotted lines

represent the mass of the lowest and first excited vector mesons in the low temperature (Minkowski)

phase for a near-critical Minkowski embedding.

the critical embedding was approached [10]. Further then, this mass does not seem to be

correlated with the positions of the spectral peaks for the black hole embedding at the

phase transition, beyond being in the same general range.

The high peaks in the spectral function for χ0 → 1 may be interpreted in terms of

quasiparticle states because their width Γ and is much less than their frequency Ω: Γ ≪ Ω.

Appendix D presents a complementary discussion which reaches the same conclusion. The
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appendix only explicitly discusses the pseudoscalar channel but the results for the vector

are almost identical. In particular, the effective potential shown in appendix C develops a

finite barrier at intermediate values of the radius as χ0 → 1. This suggests the existence

of metastable states in the corresponding Schroedinger problem which, as discussed in the

appendix, would correspond to quasinormal frequencies with Γ ≪ Ω in this regime.

4.1.1 Charged vectors

The N = 2 gauge theory under study here has an internal SO(4) = SU(2) × SU(2) global

symmetry, which is dual to rotations on the D7-brane’s internal S3. The vector modes

which are considered above are all singlets under this symmetry. However, these operators

only correspond to the lowest dimension operators in an infinite family of vector operators

transforming in the (ℓ/2, ℓ/2) representation of the internal symmetry [11]. As outlined in

appendix A, these operators are built up by combining the adjoint hypermultiplet fields

(scalars) with the fundamental fields appearing in the singlet operators.

Evaluating the spectral function for these vectors with ℓ 6= 0 follows closely the analysis

in the previous section and so we only present the salient steps here. Of course, the first

step is to consider an expansion of the world-volume vector in terms of spherical harmonics

on the S3,

Aµ =
∑

ℓ

Yℓ(S3)Aℓ
µ(ρ, xµ) , (4.21)

with

∇2
[3]Yℓ = −ℓ(ℓ + 2)Yℓ , (4.22)

where ∇2
[3] is the Laplacian on the unit three-sphere.9 Examining the eight-dimensional

Maxwell equations arising from eq. (4.1), one finds that with ℓ 6= 0 (and T 6= 0) Aℓ
ρ cannot

be set to zero in general. Hence the general analysis becomes somewhat more elaborate.

However, if we focus on spatially independent fluctuations, i.e., the q → 0 limit above,

then both Aℓ
ρ,t decouple and the calculations are greatly simplified. In this case then, the

analog of eq. (4.9) becomes

Sℓ = −NfNcT
2

26π2

∫

dω

ω2

[

fρ3(1 − χ2)2
√

1 − χ2 + ρ2χ̇2
Eℓ

i (ρ,−k)∂ρE
ℓ
i (ρ, k)

]ρ→∞

ρ→1

, (4.23)

where i is summed over x, y, z and Eℓ
i ≡ ωAℓ

i . Recall that with vanishing spatial momenta,

there is no distinction between longitudinal and transverse electric fields in the language

of section 2.

Examining the asymptotic behaviour of any of the electric field components, we write

Eℓ
i (ω, ρ) = Eℓ

0(ω)
(πT )ℓ

2ℓ/2
ρℓ
∞

Eℓ,ω(ρ)

Eℓ,ω(ρ∞)
, (4.24)

9Of course, the spherical harmonics for a given ℓ are also labeled by two further SU(2) quantum num-

bers, but we drop these as they are irrelevant in the following. Implicitly, our normalization is such that

Yℓ=0
m=0,n=0(S

3) = 1 and so
R

d3Ω
√

h3 Y∗ℓ′

m′n′Yℓ
mn = 2π2 δℓℓ′ δmm′ δnn′ .
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where it is understood that eventually the limit ρ∞ → ∞ will be taken. Note the factor

of ρℓ
∞ required to obtain the correct asymptotic behaviour — see appendix A. As above,

taking variations of Eℓ
0(k) then yields the the flux factor Fℓ for Eℓ

i . This then leads to the

following expression for the spectral function for Ai:

Rℓ
ii(ω) ≡ −2ImGℓ

ii(ω) = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2Im

[

ρ2ℓ+3 ∂ρEℓ,ω(ρ)

Eℓ,ω(ρ)

]

ρ→∞

(4.25)

with no sum on i. Instead for any value of i = x, y, z, the spectral functions are identical,

i.e., Rℓ
xx(ω) = Rℓ

yy(ω) = Rℓ
zz(ω), because we are limiting our analysis here to the case of

vanishing spatial momentum. Hence in the following, we denote these spectral functions

by Rℓ(ω).

In order to evaluate the spectral functions, we must solve the Maxwell equations arising

from the eight-dimensional action (4.1). Expressed in terms of the electric field components,

the relevant equation of motion is

Ëℓ,ω +

[

4ḟ

f̃ f
+

f

f̃2

√

1 − χ2 + ρ2χ̇2

ρ3(1 − χ2)2
∂ρ

(

f̃2ρ3(1 − χ2)2

f
√

1 − χ2 + ρ2χ̇2

)]

Ėℓ,ω (4.26)

+
1 − χ2 + ρ2χ̇2

ρ2(1 − χ2)2

[

8(1 − χ2)f̃

ρ2f2
w2 − ℓ(ℓ + 2)

]

Eℓ,ω = 0 .

We now proceed to compute the spectral function Rℓ(ω), first for massless quarks (m = 0)

and then for quarks with a finite mass.

Recall that the case of massless quarks corresponds to the equatorial embedding of the

D7-branes for which χ(ρ) = 0. In the previous section, we noted that for the ℓ = 0 vector,

the calculation of R(ω) then becomes the same as that in our example of section 2.3. In

particular, an analytic solution can be found for q = 0 because it is possible to solve (4.19)

exactly when χ = 0. Here we show that in fact the general equation (4.26) for any ℓ has

an analytic solution in this case of massless quarks.

Setting χ = 0 and making the change of variables x̄ = 1 − 2/ρ2f̃ = 1 − 2ρ2/(1 + ρ4),

the equation for the fluctuation Eℓ,ω(x̄) is

E′′
ℓ,ω +

f ′

f
E′

ℓ,ω +

[

w2

(1 − x̄)f2
− ℓ(ℓ + 2)

4(1 − x̄)2f

]

Eℓ,ω = 0 , (4.27)

where the prime denotes a derivative with respect to x̄. As in eq. (2.21), the solution is

given by10

Eℓ,ω(x̄) = x̄−iw/2 (2 − x̄)−w/2 F (x̄) , (4.28)

where the regular function F (x̄) is a straightforward generalization of the result (2.23):

F (x̄) = (1 − x̄)
(1+i)w

2 2F1

(

1 +
ℓ

2
− (1 + i)w

2
,− ℓ

2
− (1 + i)w

2
; 1 − iw;

x̄

2(x̄ − 1)

)

. (4.29)

10Note that near the horizon x̄ ≃ 2(ρ − 1)2 and so the small x̄ behaviour here is consistent with the

boundary condition at the horizon discussed for the numerical solution.
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The spectral function is then given by

Rℓ(ω) = − lim
ǫ→0

π2ℓ

2ℓ
NfNcT

2ℓ+2 Imf(x̄)

(

1 +
√

f

1 − x̄

)ℓ
E(x̄,−w)

E(1 − ǫ,−w)

E′(x̄,w)

E(1 − ǫ,w)
. (4.30)

The right hand side of eq. (4.30) is independent of the radial coordinate [15] and thus can

be computed at any value of x̄, e.g., at x̄ = 0. We obtain

Rℓ(ω) =
2ℓπ2ℓ−1

(ℓ!)2
NfNcT

2ℓ+2 sinh πw

∣

∣

∣

∣

∣

Γ

(

1 +
ℓ

2
− w

2
− iw

2

)

Γ

(

1 +
ℓ

2
+

w

2
− iw

2

)

∣

∣

∣

∣

∣

2

.

(4.31)

Eq. (4.31) shows that the poles of the retarded correlator corresponding to Rℓ(ω) are

located at

w = ±
(

n + 1 +
ℓ

2

)

(1 ∓ i) , n = 0, 1, . . . . (4.32)

Note that there is an interesting degeneracy in the positions of these quasinormal modes

in that their position only depends on n + ℓ/2. This is reminiscent of the unexpected

degeneracy found in [11], where the meson masses only depended on the combination n+ ℓ

(at T = 0). For ℓ = 0, eq. (4.31) reduces (up to the normalization) to the result (2.28).

For odd and even ℓ > 0, respectively, eq. (4.31) can be written in the form

Rℓ=2n−1(ω) =
π2ℓ

2ℓ
NfNcT

2ℓ+2 24nΓ4(n + 1/2)

2π[(2n − 1)!]2
sinh πw

cosh πw + cos πw

n
∏

k=1

(

1 +
4w4

(2k − 1)4

)

,

Rℓ=2n(ω) =
π2ℓ

2ℓ
NfNcT

2ℓ+2 24n(n!)4

[(2n)!]2
πw2 sinh πw

cosh πw − cos πw

n
∏

k=1

(

1 +
w4

4k4

)

,

where n = 1, 2, . . .. The asymptotics of the spectral function for large and small frequency

are

Rℓ(ω) =
π2ℓ+1

(ℓ!)2
NfNcT

2ℓ+2 w2ℓ+2
(

1 + (−1)ℓ2e−πw cos πw
)

(

1 + O(1/w4)
)

, (4.33)

w → ∞ ,

Rℓ(ω) =
2ℓπ2ℓ

(ℓ!)2
NfNcT

2ℓ+2Γ4(1 +
ℓ

2
)w , w → 0 . (4.34)

In particular, we have the ℓ = 1 spectral function:

R1(ω) =
π3

4
NfNcT

4 (1 + 4w4) sinhπw

cosh πw + cos πw
. (4.35)

The large frequency asymptotics of R1(ω) is

R1(ω) → R̄1(ω) =
π2

2
NfNcT

4
[

2πw4
(

1 − 2e−πw cos πw
)

+
π

2

]

, (4.36)

where we have dropped O(e−πw) terms. Thus for sufficiently large values of w the finite

temperature part of the spectral function, R1(ω) − π3NfNcT
4w4, exhibits damped oscilla-

tions around π3NfNcT
4/4 — see figure 6. Note that for ℓ ≥ 2 the finite temperature part
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Figure 6: The finite temperature parts of the Mq = 0 (χ0 = 0), q = 0, ℓ = 1 vector spectral

function (R1 − NfNcω
4/16π) and of its high frequency asymptotics (4.36) (R̄1 − NfNcω

4/16π)

(dashed blue line), in units of π2NfNcT
4/8, versus w = ω/2πT . Note the figure also demonstrates

the precise agreement between the numerical results (red dots) and the exact result (solid black

line, which is essentially invisible above).

of the spectral function asymptotes w2ℓ+2 for large w and thus the oscillatory behaviour

again becomes a subdominant effect.

As in the previous section, for massive quarks (χ0 6= 0), both the embedding equa-

tion (3.7) and the vector equation of motion (4.26) must be solved numerically. Solving

for Eℓ,ω requires special attention to the boundary conditions near the horizon (ρ → 1).

As for the ℓ = 0 case, the appropriate incoming wave conditions are imposed by taking

Eℓ,ω(ρ) = (ρ − 1)−iwF (ρ) with F (1) = 1 and ∂ρF (1) = iw/2.

The vector spectral function for ℓ = 1 is shown for various values of χ0 in figure 7.

For all values of χ0, the ℓ = 1 spectral functions approach NfNcω
4/16π at large ω — see

appendix C. While this common behaviour is not clear in figure 7, it can be seen by going

to larger w. Note that the spectral functions in the upper plot, which correspond to values

of Mq/T above the phase transition, seem to be essentially featureless. In contrast, the

lower plot shows that as the critical embedding is approached with χ0 → 1 some peaks are

appearing in the spectral function. The masses of the lowest two ℓ = 1 vector mesons in

the low temperature phase for a near-critical Minkowski embedding have been included in

this plot as well. While these lines lie close to the first peak for the χ0 = 0.9999 spectral

function, the peaks do not seem to be converging to these positions nearly as rapidly as

was seen for ℓ = 0.

The peaks in the spectral function for χ0 → 1 may again be interpreted in terms of

quasiparticle states when their width Γ is much less than their frequency Ω: Γ ≪ Ω. Hence,

as discussed for ℓ = 0, it appears that the quasinormal frequencies are approaching the real
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Figure 7: The vector spectral function for ℓ = 1 in units of π2NfNcT
4/8 versus w. The upper plot

shows values of χ0 corresponding to temperatures above the phase transition while the lower plot

is for values of χ0 past the phase transition. In the lower plot we focus on values of w for which

the spectral function shows structure. As usual, the vertical dotted lines represent the mass of the

lowest and first excited vector mesons for ℓ = 1 in the low temperature (Minkowski) phase for a

near-critical Minkowski embedding.

axis in this regime. However, we stress that this approach is occurring much more slowly for

the ℓ > 0 modes. In particular, the spectral function remains essentially structureless for

χ0 = 0.94, which corresponds to the phase transition between the black hole and Minkowski

embeddings. Therefore the mesonic states corresponding to the higher-ℓ vector operators

dissociate immediately at the phase transition.

Note the complementary discussion in Appendix D would lead to similar conclusions.
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In particular, a barrier in the effective potential develops as in the ℓ = 0 analysis but one

must go to values of χ0 much closer to one when ℓ > 0. Hence metastable states in the

corresponding Schroedinger problem would only appear for χ0 in this regime very close to

one.

4.2 Scalars

We now turn to scalar and pseudoscalar excitations of the fundamental fields. In the dual

gravity picture, these correspond to scalar fluctuations of the D7-brane probes in the black

D3 geometry (3.3) about the fiducial embedding given by θv(ρ):

θ(σa) = θv(ρ) + δθ(σa) , φ = 0 + δφ(σa) (4.37)

where σa denotes the D7-branes’ worldvolume coordinates. Appendix A describes the

holographic dictionary relating the scalar δθ and the pseudoscalar δφ to the corresponding

gauge theory operators. We present the analysis for general ℓ modes but our results will

focus on the spectral functions of lowest dimension operators with ℓ = 0.

The pull-back of the bulk metric (3.3) to the D7 worldvolume is:

ds2 = ds2(g)− 2L2χ̇
√

1 − χ2
∂a(δθ)dxadρ + L2

[

∂a(δθ)∂b(δθ) + χ2∂a(δφ)∂b(δφ)
]

dxadxb (4.38)

where

ds2(g) =
1

2

(r0ρ

L

)2
[

−f2

f̃
dt2 + f̃dx2

3

]

+
L2

ρ2

[(

1+
ρ2χ̇2

1−χ2

)

dρ2+ρ2 sin2(θv + δθ)dΩ2
3

]

.

(4.39)

As before, we’ve put χ(ρ) = cos θv(ρ). Using the DBI action and retaining terms only to

quadratic order in the fluctuations, the Lagrangian density is

L = L0 + −NfTD7r0
4

4

√

h3

(

L̃1 + L̃2

)

− NfTD7r0
4

4

√

h3 ρ3f f̃
√

1 − χ2 + ρ2χ̇2 (4.40)

×
[

−3

2

1 − χ2

1 − χ2 + ρ2χ̇2
(δθ)2+

L2

2
(1−χ2)gab

v

(

(1−χ2)∂a(δθ)∂b(δθ)

1−χ2+ρ2χ̇2
+χ2∂a(δφ)∂b(δφ)

)]

where gab
v is the metric (4.39) with δθ = 0, L0 is the Lagrangian density for the fiducial

embedding χ (given in equation (3.6)), and the boundary terms L̃1 and L̃2 are

L̃1 = ∂ρ

[

−ρ5f f̃(1 − χ2)3/2χ̇
√

1 − χ2 + ρ2χ̇2
δθ

]

(4.41)

L̃2 = ∂ρ

[

−3

2

ρ5f f̃(1 − χ2)χχ̇
√

1 − χ2 + ρ2χ̇2
(δθ)2

]

. (4.42)

We eliminated terms linear in δθ by integrating by parts and using the equation of mo-

tion (3.7) for χ.

The equations of motion for the fluctuations follow from (4.40) as

∂a

[

√

h3 ρ3f f̃(1 − χ2)χ2
√

1 − χ2 + ρ2χ̇2 gab
v ∂b(δφ)

]

= 0 (4.43)
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for δφ and

L2∂a

[√
h3 ρ3f f̃(1 − χ2)2
√

1 − χ2 + ρ2χ̇2
gab
v ∂b(δθ)

]

+ 3

√
h3 ρ3f f̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2
δθ = 0 (4.44)

for δθ.

4.2.1 Pseudoscalar δφ

The relevant portion of the action (4.40) for the pseudoscalar δφ is

Sδφ = −TD7Nfr0
4L2

8

∫

d8σ ∂a

[

√

h3 ρ3f f̃(1 − χ2)χ2
√

1 − χ2 + ρ2χ̇2 gab
v δφ ∂bδφ

]

(4.45)

where we’ve integrated by parts and used the equation of motion (4.43). To evaluate the

spectral function we only need the complex part of (4.45) and hence in the following we

retain only the term involving the ρ derivative. Expanding the fluctuation in terms of

spherical harmonics on the S3 of unit radius,

δφ =
∑

ℓ

Yℓ(S3)δφℓ(ρ, xµ) , (4.46)

the term needed to evaluate the spectral function for the ℓth mode is

Sδφℓ
= −TD7Nfr0

4Ω3

8

∫

d4x

[

ρ5f f̃(1 − χ2)2χ2

√

1 − χ2 + ρ2χ̇2
δφℓ ∂ρδφℓ

]

ρ→∞

. (4.47)

We take the Fourier transform of δφℓ with k = (−ω, q, 0, 0),

δφℓ(ρ, xµ) =

∫

dωdq

(2π)2
e−iωt+iqxδφℓ(ρ, k) , (4.48)

and write

δφℓ(ρ, k) = δφ0
ℓ (k)

(πT )ℓ

2ℓ/2
ρℓ
∞

Pℓ,k(ρ)

Pℓ,k(ρ∞)
(4.49)

where the limit ρ∞ → ∞ will eventually be taken. Note the factor of ρℓ
∞ required to obtain

the correct asymptotic behaviour δφℓ(ρ∞, k) = δφ0
ℓ (k)ρℓ

∞ — see appendix A. We can then

define the flux factor for the ℓth mode as

Fφℓ
= − π2ℓ

2ℓ+6
λNfNcT

2ℓ+4

[

ρ5f f̃(1 − χ2)2χ2

√

1 − χ2 + ρ2χ̇2

ρ2ℓ
∞ Pℓ,−k(ρ) ∂ρPℓ,k(ρ)

Pℓ,−k(ρ∞)Pℓ,k(ρ∞)

]

ρ→∞

. (4.50)

The retarded Green’s function is then G = −2F [15] from which we obtain the spectral

function R = −2Im G for q = 0 as

Rφℓ
(ω, 0) = − π2ℓ

2ℓ+4
λNfNcT

2ℓ+4m2 lim
ρ→∞

Im

[

ρ3+2ℓ ∂ρPℓ,k(ρ)

Pℓ,k(ρ)

]

, (4.51)

where we have simplified using eq. (3.8).
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For the ℓ = 0 mode, the holographic dictionary in appendix A describes how the

variation δφ0(k) introduced an insertion of the operator Mq Oφ. Hence to get the spectral

function for the dimension-three operator Oφ, we should normalize the spectral function

by an extra factor 1/M2
q . We expect that this should also hold for ℓ > 0, in which case the

operator Oφℓ
has dimension ℓ + 3. Recalling that m2 = 4M2

q /λT 2, we arrive at:

R̃φℓ
(ω) =

1

M2
q

Rφℓ
(ω, 0) = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2 lim
ρ→∞

Im

[

ρ3+2ℓ ∂ρPk(ρ)

Pk(ρ)

]

. (4.52)

Using (4.48) and (4.49), the equation of motion (4.43) becomes

∂ρ

[

ρ5f f̃(1 − χ2)2χ2

√

1 − χ2 + ρ2χ̇2
∂ρPℓ,k

]

(4.53)

+ρ3f f̃χ2
√

1 − χ2 + ρ2χ̇2

[

8(1 − χ2)

ρ2f̃

(

f̃2

f2
w2 − q2

)

− ℓ(ℓ + 2)

]

Pℓ,k = 0 .

Near the horizon (ρ → 1) we impose incoming wave boundary conditions so that taking

Pℓ,k(ρ) ≃ (ρ − 1)−iw

[

1 +
iw

2
(ρ − 1) + O(ρ − 1)2

]

for ρ → 1 , (4.54)

we were able to solve (4.53) numerically to evaluate the spectral function (4.52). The high

frequency asymptotics of the spectral function are described in appendix C.

Figure 8 provides plots of the finite temperature part of the spectral function, R̃φ −
NfNcω

2/4π, for the pseudoscalar δφ, ℓ = 0, for various values of χ0. Qualitatively the

results are the same as for the vector spectal function shown in figure 5.11 The quasiparticle

peaks in spectral function quickly dissipate above the phase transition, i.e., for χ0 < 0.94.

High sharp peaks develop as χ0 → 1. As before, the position of these peaks may be

compared with the masses of the lowest pseudoscalar mesons on the Minkowski branch.

The vertical dotted lines mark the masses (w ≃ 0.770 and 0.849) of the lowest two δφ

mesons (with ℓ = 0) for a near-critical Minkowski embedding. Note that the first peak

in the χ0 = 0.9999 line is nearly centred on the first value of w. The second peak of this

spectral function also seems to be converging towards the mass of the next meson. Hence

as in the vector channel, we see that the spectra of these pseudoscalar fluctuations in the

Minkowski and black hole phases seem to converge as we approach the critical embedding.

As before, the sharp peaks which develop in the spectral function as χ0 approaches 1

may be interpreted in terms of quasiparticle states. Again the complementary discussion

of the quasinormal spectrum, given in appendix D, leads to the same conclusion.

4.2.2 Scalar δθ

The derivation of the spectral function for the scalar δθ is entirely analogous to that for

11In the interests of space we do not include plots of the pseudoscalar spectral function for ℓ > 0 here,

however, the ℓ = 1 plot closely ressembles that for the vector, shown in figure 7.
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Figure 8: The finite temperature part of the δφ, ℓ = 0, spectral function, R̃φ − NfNcω
2/4π, in

units of NfNcT
2/4 versus w = ω/2πT for various values of χ0. The upper plot shows the spectral

function for values of χ0 corresponding to temperatures above the phase transition while the lower

plot is for values of χ0 past the transition. The vertical dotted lines represent the masses of the

lowest two pseudoscalar mesons for a near-critical Minkowski embedding.

the pseudoscalar. The portion of the action for the δθ fluctuations is, from (4.40),

Sδθ = −NfTD7r0
4

4

∫

d8σ

{

√

h3∂ρ

[

−ρ5f f̃(1 − χ2)3/2χ̇
√

1 − χ2 + ρ2χ̇2
δθ − 3

2

ρ5f f̃(1 − χ2)χ̇χ
√

1 − χ2 + ρ2χ̇2
(δθ)2

]

+
L2

2
∂a

[√
h3ρ

3f f̃(1 − χ2)2
√

1 − χ2 + ρ2χ̇2
gab
v δθ∂bδθ

]}

,

where we’ve integrated by parts and used the equation of motion (4.44). As discussed

above, to evaluate the spectral function we only need the imaginary part of the Green’s
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function and hence of this action. Thus, only the ρ derivative term from the second line

is needed. We expand the scalar in terms of spherical harmonics on the S3 (as in (4.46)),

take the Fourier transform (as in (4.48)), and express the ℓth mode as

δθℓ(ρ, k) = δθ0
ℓ (k)

(πT )ℓ

2ℓ/2
ρℓ−1
∞

Rℓ,k(ρ)

Rℓ,k(ρ∞)
, (4.55)

where we will eventually take the limit ρ∞ → ∞. Note that the factor of ρℓ−1
∞ is inserted

to obtain the correct asymptotic behaviour — see appendix A.

Following the same procedure as with the pseudoscalars, we identify

Fθℓ
= − π2ℓ

2ℓ+6
λNfNcT

2ℓ+4

[

ρ5f f̃(1 − χ2)3

(1 − χ2 + ρ2χ̇2)3/2

ρ2ℓ−2
∞ Rℓ,−k(ρ)∂ρRℓ,k(ρ)

Rℓ,−k(ρ∞)Rℓ,k(ρ∞)

]

ρ→∞

. (4.56)

The spectral function then follows as

Rθℓ
(ω, 0) = − π2ℓ

2ℓ+4
λNfNcT

2ℓ+4 lim
ρ→∞

Im

[

ρ3+2ℓ ∂ρRℓ,k(ρ)

Rℓ,k(ρ)

]

, (4.57)

where we’ve used (3.8) to simplify.

Now recall χ = cos θ and asymptotically χ ≃ m/ρ where m is determined by gauge

theory quantities in eq. (A.8). Note that asymptotically we can relate a variation in θ with

a variation in χ: δχ = −δθ. Hence, a variation of the coefficient of the operator Om in the

gauge theory action (i.e., figuratively we might say δMq(k)) corresponds to (
√

λT/2)δθ0(k)

in eq. (4.55). In the correlator (4.57) two factors of δθ0 have been stripped off, so in order

to normalize the correlator so that only the variations of the gauge theory coefficient are

removed, we should multiply by a factor of 4/λT 2:

R̃θ(ω) =
4

λT 2
Rθ(ω, 0) = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2 lim
ρ→∞

Im

[

ρ3+2ℓ ∂ρRk(ρ)

Rk(ρ)

]

. (4.58)

With the Fourier transform of δθ and using the notation (4.55), the equation of mo-

tion (4.44) for δθ becomes

∂ρ

[

ρ5f f̃(1 − χ2)3

(1 − χ2 + ρ2χ̇2)3/2
∂ρRℓ,k

]

(4.59)

+
ρ3f f̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2

[

8(1 − χ2)

ρ2f̃

(

f̃2

f2
w2 − q2

)

− (ℓ + 3)(ℓ − 1)

]

Rℓ,k = 0 .

As with the vector and pseudoscalar, we set q = 0 and impose incoming wave boundary

conditions at the horizon, requiring that the field behave as

Rℓ,k(ρ) ≃ (ρ − 1)−iw

[

1 +
iw

2
(ρ − 1) + O(ρ − 1)2

]

(4.60)

near ρ = 1.

We solved (4.59) numerically and evaluated the spectral function using (4.58). The

high frequency asymptotics of the spectral function appear in appendix C. Plots of the finite
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Figure 9: The finite temperature part of the ℓ = 0 scalar (δθ) spectral function, R̃θ −NfNcω
2/4π,

in units of NfNcT
2/4 for χ0 ≤ 0.94, corresponding to temperatures above the phase transition.

temperature part of the s-wave spectral function, R̃θ −NfNcω
2/4π are provided in figure 9

for D7-brane embeddings corresponding to temperatures above the phase transition. The

spectral function shows no high peaks and little structure at temperatures above the phase

transition.

Figure 10 provides plots of the spectral function for values of 0.94 < χ0 < 1, corre-

sponding to black hole embeddings past the phase transition, i.e., continuing along the

black hole branch in figure 4 past point A1. For 0.94 < χ0 < 0.96, prior to the first kink in

the free energy (between A1 and A2 in figure 4), no striking peaks appear in the spectral

function. However, for χ0 = 0.9621, point A2 in figure 4, a very high peak appears in the

spectral function, centred on ω = 0. Taking a value of χ0 slightly larger (smaller), say

χ0 = 0.964 (χ0 = 0.96), figure 10 shows that the peak is diminishing and is centred on a

small but nonzero value of ω. A bit further away from the first kink, e.g., χ0 = 0.97 , 0.98

no peak is evident. Following the D7-brane embeddings to the second kink, which occurs

for χ0 = 0.99973885, the same behaviour is evident: Near this value of χ0 a small peak

starts to appear in the spectral function and at χ0 = 0.99973885 a high peak, centred on

ω = 0 appears. As we will discuss in section 6, this behaviour is a result of quasinormal

eigenfrequencies crossing the real axis from the lower to upper half of the complex ω-plane.

As a result, these black hole embeddings become unstable beyond χ0 = 0.9621, in pre-

cise agreement with the thermodynamic discussion of section 3.1. Ref. [36] examines the

quasinormal modes in this channel directly and find qualitative evidence of this behaviour,

as well.
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Figure 10: The finite temperature part of the scalar (δθ) spectral function for ℓ = 0 in units of

NfNcT
2/4 for values of χ0 past the phase transition. The lower plot focusses on the region near

w = 0 where a peak appears in the spectral for χ0 = 0.9621, corresponding to the first kink in the

plot of the free energy versus temperature.

At first sight, the qualitative difference in the behaviour of the ℓ = 0 scalar spectral

function from the previous cases may seem to be at odds with the expectation that the

fluctuation spectra of Minkowski and black hole phases should converge as they approach

the critical embedding. However, we must recall that it was precisely the ℓ = 0 scalar

modes that also realized an infinite family of instabilities on the Minkowski branes [10].

Hence we expect that the spectra of the two phases are again converging but now on the

imaginary frequency axis. Hence the absence of a series of quasiparticle peaks should in
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fact be the expected result.

Note, however, that in the analysis of the Minkowski phase [10], the ℓ > 0 scalar

modes remained stable. Hence we might expect to see the appearance of quasiparticles in

the spectral functions for these channels on the black hole embeddings. Figure 11 provides

a plot of the scalar spectral function for the ℓ = 1 mode. The spectral function shows very

little structure for any values of χ0, or, equivalently, m. However, we certainly found no

evidence for ℓ = 1 of quasinormal eigenfrequencies crossing the real axis from the lower to

upper half of the complex ω-plane. Instead from the general arguments above, we expect

that if this ℓ = 1 spectral function was studied more intensively that in fact quasiparticle

peaks would appear very close to χ0 = 1.

We close this section with one final observation. While the pseudoscalar equation of

motion (4.53) is singular in the massless limit, i.e., χ0 → 0, the spectral function should

have a well defined limit. Further if comparing the χ → 0 limits in the pseudoscalar and

scalar channels in figures 8 and 9, we find that they converge on the same spectral function

in this limit. The fact that these spectral functions coincide in this limit is a reflection

of the restoration of an additional U(1) global symmetry, corresponding to rotations in

the 89-plane in the array (3.1) when the quark mass vanishes. In the massless limit, this

symmetry relates the two scalar operators.

5. Diffusion constant for ‘light’ quarks

The worldvolume gauge field is dual to a conserved current in the dual gauge theory. One

then expects to see the diffusion of the conserved charge, i.e., quark charge, according

to Fick’s law with a certain diffusion constant. This expectation can be confirmed in a

holographic context [17, 16] and in fact, the computation of the diffusion constant can be

performed in a number of different ways. In the present D3/D7 brane system, we have

explicitly computed the diffusion constant in three different ways: (a) using the membrane

paradigm [17]; (b) the Green-Kubo formula; and (c) the lowest quasinormal frequency in

the diffusion channel. In this section, we describe these different computations and our

results confirm the internal consistency of the holographic framework, in that we show

these different methods all give the same result.

5.1 Membrane paradigm method

The computation of the diffusion constant via the membrane paradigm was discussed in [17]

where explicit formulae for various transport coefficients in terms of metric components for

a wide class of metrics were derived. There, the authors considered perturbations of a black

brane background and a formula for the diffusion constant (eq. (2.27) in [17], also quoted

here in eq. (E.5)) resulted from a derivation of Fick’s law. An analogous computation can
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Figure 11: The scalar spectral function for ℓ = 1 in units of π2NfNcT
4/8 versus w. The upper plot

is for values of χ0 corresponding to temperatures above the phase transition while the lower plot is

for χ0 past the phase transition. Note in the lower plot that the lines for χ0 = 0.9621, 0.99, 0.9999

roughly coincide with that for χ0 = 0.94 and that there is no structure suggesting the existence of

quasiparticle states.

be performed for the D7-branes’ vector field for black hole embeddings and it gives12

D =

√−g√
h3

1

gxx
√−gttgρρ

∣

∣

∣

∣

ρ=1

∫

dρ (−gtt) gρρ

√
h3√−g

=
2(1 − χ0)

3/2

πT

∫ ∞

1
dρ

f
√

1 − χ2 + ρ2χ̇2

f̃2ρ3(1 − χ2)2
(5.1)

12Note that the same method can be applied to compute the diffusion constant for the gauge theory

corresponding to the supergravity configuration of a Dq-brane probe in the near-horizon black Dp-brane

geometry — see appendix E.
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Figure 12: The diffusion constant D times the temperature T versus temperature T/M̄ for D7-

brane probes in the black D3-brane geometry. The dotted vertical line marks the temperature of

the phase transition.

where, in the first expression, the metric g is the induced metric on the D7-branes (3.5)

and h is the determinant of the metric on the S3 of unit radius.

Using the numerical solutions for the embedding χ, we numerically integrated (5.1)

to find DT . The results are plotted in figures 12 and 13. Figure 12 clearly shows that

asymptotically at high temperatures, DT approaches 1/2π. This coincides with the result

for the diffusion constant of R-charges in N = 4 SYM [16]. At a pragmatic level, this

coincidence arises because both results are constructed from correlators of a Maxwell field

in an AdS5 black hole background. As the quark mass is increased, the induced geometry on

the D7-brane deviates from that of the background geometry. Hence one finds a departure

of DT away from 1/2π as the ratio T/M̄ decreases. Close to the phase transition, there

is a rapid decrease and DT = 0.036 ≃ 0.226/2π at the phase transition. If we continue

following the black hole branch beyond the phase transition, DT continues to fall and it

also becomes a multi-valued function of temperature, as shown in figure 13. The latter

simply reflects the fact that multiple embeddings can be found for a single temperature in

the vicinity of the critical solution.

5.2 Green-Kubo formula

As discussed in section 2.1, the diffusion constant may also be computed using the

Green-Kubo formula (2.11) which relates the product of the diffusion constant D and

the susceptibility Ξ to the slope of the vector spectral function (ℓ = 0) for ω → 0:

DΞ = limω→0 R(ω)/2ω. The susceptibility is Ξ = ∂nq/∂µ|µ=0 where nq is the charge

density and µ is the chemical potential, both for fundamental matter (quarks or their su-

persymmetric generalization). In order to compute the susceptibility, one must consider

the D3/D7 brane system with a finite chemical potential [38]. The susceptibility can be
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Figure 13: Plots of the diffusion constant D times the temperature T versus temperature T/M̄

for D7-brane probes in the black D3-brane geometry, zooming in on the spiral behaviour for tem-

peratures near the phase transition.

computed directly from eq. (2.22) of [38]

µ̃ = 2d̃

∫ ∞

1
dρ

f
√

1 − χ2 + ρ2χ̇2

√

f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2]
, (5.2)

which applies for any black hole embeddings. From the appendix of that paper, µ̃ and d̃

are related to µ and nq via

µ̃ =

√

2

λ

µ

T
, d̃ =

25/2

NfNcλ1/2

nq

T 3
. (5.3)

Combining these definitions, we have

∂d̃

∂µ̃
=

4

NfNcT 2

∂nq

∂µ
(5.4)

which, interestingly, is independent of the ’t Hooft coupling λ.

Note from eq. (5.2) that µ̃ = 0 is equivalent to d̃ = 0 which means that we can

calculate ∂µ̃/∂d̃|d̃=0 from this equation and take the inverse for the desired derivative.

Hence a straightforward calculation yields

∂µ̃

∂d̃
= 2

∫ ∞

1
dρ

ρ6f f̃4(1 − χ2)4
√

1 − χ2 + ρ2χ̇2

(

f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2]
)3/2

, (5.5)

and evaluating at d̃ = 0 gives

∂µ̃

∂d̃

∣

∣

∣

∣

d̃=0

= 2

∫ ∞

1
dρ

f
√

1 − χ2 + ρ2χ̇2

f̃2ρ3(1 − χ2)2
. (5.6)

Combining eqs. (5.4) and (5.6), our final result is

Ξ ≡ ∂nq

∂µ

∣

∣

∣

∣

µ=0

=
NfNc

4
T 2

{

∂µ̃

∂d̃

∣

∣

∣

∣

d̃=0

}−1

. (5.7)
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Note that in limit of massless quarks (i.e., χ = 0), these expressions have a simple form

∂µ̃

∂d̃

∣

∣

∣

∣

d̃=0

=
1

2
, Ξ =

NfNc

2
T 2 . (5.8)

Numerically evaluating the low frequency limit of the spectral function R and the

susceptibility (using (5.7) and (5.6)), we computed the diffusion constant using (2.11), and

the results confirm those displayed in figure 12.

Further, if we combine (5.7) and (5.1), we are lead to write

D Ξ =
(1 − χ2

0)
3/2

4π
NfNc T , (5.9)

which, in view of (2.11), provides a simple analytic expression for the low frequency (ω → 0)

limit of the vector spectral function:

R(ω) =
(1 − χ2

0)
3/2

2π
NfNcTω + · · · . (5.10)

In a related analysis, the electric conductivity σ of this system with fundamental quarks

was recently computed from Ohm’s law using AdS/CFT techniques [39]. In the limit of

vanishing quark density and small external electric field, the result of [39] reduces to our

formula (5.9) above, as it should according to the generalized Einstein relation σ/e2 = D Ξ.

(Note that e2 is set to one in the conventions of [39].)

5.3 Lowest quasinormal frequency (in the diffusion channel)

The final computation of the diffusion constant comes from examining the hydrodynamic

dispersion relation, corresponding to the lowest quasinormal frequency. At small three-

momentum q, the diffusion constant can be extracted from: ω = −iDq2 + O(q4) [17]. In

principle, the calculation of the quasinormal mode spectrum from eq. (4.19) proceeds as

follows: For ρ → ∞, eq. (4.19) implies that Ex ≃ A + Bρ−2 for some constants A,B. Nor-

malizable modes will be those with A = 0. Hence one method to determine the quasinormal

frequencies is to use a two-dimensional shooting method, i.e., solving (4.19) numerically

with incoming wave boundary conditions at the horizon and then tuning the (complex) fre-

quency to find a solution behaving as ρ−2 asymptotically. For small q we solved (4.19) for

various m to determined the lowest quasinormal frequency and our results for the diffusion

constant are identical to those plotted in figure 12.

6. Discussion

In this paper, we used holography to investigate various aspects of the high temperature

phase of an N = 2 super-Yang-Mills theory with fundamental matter. The holographic

description consists of probe D7-branes in the near-horizon background of D3-branes (in

the limit of large-Nc and large-λ with fixed Nf). In the high temperature phase, the D7-

branes extend through the event horizon of the AdS5 black hole, which describes the theory

at finite temperature. In [7, 10], this phase was denoted as the black hole branch since the
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metric induced on the worldvolume of the D7-branes is itself a black hole. Even though

the latter geometry no longer obeys Einstein’s equations, the analysis of the hydrodynamic

physics found previously for bulk fields, e.g., [40], is readily transferred to the worldvolume

fields on the D7-brane. Hence we were able to examine the spectral function for various

mesonic operators in section 4, following [30, 18], and we calculated the diffusion constant

for the quark charge in section 5, adapting techniques from [17, 16].

As reviewed in section 3, the induced geometry (3.5) on the D7-brane is determined by

first solving for the embedding profile from eq. (3.7) with appropriate asymptotic boundary

conditions (3.8). Given the complexity of eq. (3.7), these geometries are only known in

general from numerical integration. However, there is one particularly simple case, namely

that of zero quark mass. In this case, the embedding is trivial, i.e., χ = 0 everywhere,

and the induced geometry (3.5) is precisely that of (the direct product of) an AdS5 black

hole (with a constant S3). Hence our analysis of sections 4.1 and 5 reduces to studying

a Maxwell field in an AdS5 black hole geometry and the results precisely match those

found previously for bulk gauge fields. For example, the quark diffusion constant (with

Mq = 0) matches precisely with the R-charge diffusion constant calculated in [16, 17].

Further the new analytic expression of the vector spectral function presented in section 2.3

was extended to an analytic result for all of the higher-ℓ modes of the worldvolume vector.

As the quark mass is increased away from zero (or T/Mq decreases to finite values), the

induced black hole geometry on the D7-brane begins to deviate from that of the background.

In particular, the main differences arise near the event horizon where χ is largest. For

example, eq. (3.5) shows that the size of the S3 and hence the induced horizon area shrinks

as χ0 grows. Hence the physical properties of the fundamental fields were seen to depart

(dramatically in some cases) from the standard results with the growth of the quark mass.

Recall that some of the most interesting behaviour appeared as χ0 → 1, i.e., approaching

the critical solution for which the effective horizon area vanishes. Hence this behaviour

can be seen as a precursor of the phase transition to the low temperature phase or the

Minkowski branch, in which the D7-brane smoothly closes off above the event horizon.

In the low temperature phase (and in the limit of large Nc), the spectrum of mesons

is characterized by a discrete set of stable states [11, 10] and the spectral function is a

series of δ-function peaks, as illustrated in figure 2a. A derivation of the spectral function

for the scalar meson at T = 0 appears in appendix B. These mesonic states correspond

to open string excitations which are essentially living at the minimum radius of the D7-

brane. Since in the high temperature phase the D7-branes extends through the event

horizon, these states are destabilized. In this phase, the spectrum can be characterized

by a discrete set of quasinormal modes in the effective black hole metric induced on the

D7-brane. The spectral functions calculated in section 4 reveal interesting information

about this quasinormal spectrum. We focussed on three particular operators, which are

bilinears of the fundamental fields – the details appear in appendix A — corresponding

vector, pseudoscalar and scalar channels.

The behaviours of the vector and pseudoscalar spectral functions are very similar, as

can be seen in figures 5 and 8. The following physical picture emerges from these plots: At

very high temperatures, the spectral function closely resembles that for a vector in N = 4
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SYM. (Of course, as discussed above, the bulk and worldvolume vector results are identical

for T/Mq → ∞.) In this regime, the spectral functions show essentially no structure and

the eigenfrequencies of quasinormal modes must all be deep in the (lower) complex plane.

As the temperature decreases (with fixed quark mass), both the real and imaginary parts of

a given quasinormal frequency decrease but the formation of peaks in the spectral function

suggests that the imaginary part decreases more rapidly. At temperatures just above the

phase transition, there are vector and pseudoscalar quasiparticles. Continuing along the

black hole branch to even lower temperatures beyond the phase transition (i.e., following

the black hole line through A1 in figure 4), peaks grow very sharp and even more prominent

indicating that the quasinormal modes have Re(ω) ≫ Im(ω) in this regime.

Appendix D presents a complementary discussion which reaches the same conclusion.

Plots of the effective potential for the pseudoscalar (and vector) excitations in appendix D

show a finite potential barrier developing at intermediate values of the radius as χ0 → 1.

This suggests the existence of metastable states in the corresponding Schroedinger problem

which, as discussed in the appendix, would correspond to a quasinormal frequency with

Γ ≪ Ω i.e., the eigenfrequency approaches the real axis in this regime. Of course, while

this intuitive picture developed from the effective potential matches the behaviour of the

spectral functions discussed above, it only gives a very schematic picture of the quasinormal

spectrum. Hence it would be interesting to develop more detailed picture with a full

calculation of the quasinormal modes [36].

If we examine the positions of the peaks in the spectral functions more closely as

the black hole embedding approaches the critical solution, it appears that the real parts

of the quasinormal frequencies roughly match with the spectrum of the lowest (vector

and pseudoscalar) mesons on a near-critical Minkowski embedding. Hence one notable

feature of the spectral functions is that as χ0 → 1, the peaks are becoming sharper but

also more closely spaced and moving towards lower frequencies. For example, in figure 8,

the peaks in the χ0 = 0.9999 line are much more closely spaced than those in the χ0 =

0.99 line. This behaviour is similar to what is seen for the δφ spectrum for near-critical

Minkowski embeddings: For these near-critical embeddings, the tower of masses appears

to be collapsing to the mass of the lowest meson — see figure 7 in [10]. As the phase

transition occurs well away from the critical solution (i.e., χ0 = 0.94 versus 1), the positions

of the spectral peaks are not closely matched with the corresponding meson spectrum

for the Minkowski embedding at the phase transition. Of course, both spectra are still

characterized by the same general mass scale, as given in eq. (3.9).

We also examined the spectral functions for ℓ > 0 in vector and pseudoscalar channels.

These modes of the worldvolume fields correspond to higher dimension operators in the

field theory, which are charged under the internal symmetry group SO(4) = SU(2)×SU(2)

— see the discussion in appendix A. For these modes, the results are qualitatively similar

to those for ℓ = 0 as one approaches the critical embedding. However, the rate at which

the quasinormal frequencies approach the real axis is much slower – that is, the spectral

functions only develop pronounced peaks very close to χ0 = 1. In fact, these peaks are

already washed out at the phase transition, i.e., χ0 = 0.94. Hence the corresponding

mesons with ℓ > 0 do not survive as quasiparticles through the phase transition. The
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analogous observation applies to the excited mesons with ℓ = 0 and n ≥ 1. Examining the

spectral functions in figures 5 and 8, one finds that only the first peak remains pronounced

at χ0 = 0.94. Hence it seems that only the ground state mesons (with n = 0 = ℓ) can

be said to survive the phase transition as quasiparticles. However, even these resonances

have disappeared in the quark-gluon plasma by χ0 ≃ 0.8 or T ≃ 1.1Tfund, where Tfund is the

temperature of the phase transition.

As shown in figures 9 and 10, the behaviour of the scalar spectral function is qualita-

tively different from that found in the vector and pseudoscalar channels, shown in figures 5

and 8. As before, at high temperatures, the spectral function shows no distinguished struc-

ture, indicating that the quasinormal eigenfrequencies are all deep in the (lower) complex

plane. As the temperature decreases, a small peak develops near the origin although it

is still not very prominent at the phase transition. However, continuing to the D7-brane

embeddings on the black hole branch for temperatures below the phase transition, this

single peak grows and becomes extremely sharp and centred at ω = 0, precisely at the

first kink in the free energy, i.e., χ0 = 0.9621. Beyond this point, the peak decays and

moves away from ω = 0. Our interpretation of this behaviour is that the lowest (pair)

of quasinormal frequencies approaches the origin and actually crosses the real axis at the

point A2 in figure 4. Continuing beyond this point, this eigenfrequency moves into the

upper half plane, where it actually corresponds to an unstable mode.

This interpretation of the behaviour of the scalar spectral function is confirmed by the

qualitative analysis of the corresponding quasinormal modes in appendix D. Examining the

effective potential for the scalar excitations shows that a negative potential well develops

and grows as χ0 → 1. As discussed in the appendix, when this well is large enough, it

can support long-lived ‘bound’ states for which (the real part of) the effective energy is

negative. These modes are distinguished since Γ2 > Ω2 and further Γ < 0, so that these

bound states correspond to instabilities of the D7-brane. The spike (or pole) at ω = 0 in

the scalar spectral function discussed above results from the formation of the first bound

state where the eigenfrequency crosses the real axis. Ref. [36] studied the quasinormal

modes in this channel and developed a qualitative picture which is in agreement with our

results.

Recall that the thermodynamic discussion of section 3.1 predicted that the system

should become unstable at the point A2 in figure 4 because the specific heat of the black

hole branch becomes negative there. Hence our analysis above is in precise agreement with

this result and it shows that the instability corresponds to unstable ‘quasinormal’ modes

appearing on the D7-branes.

In fact, we found the scalar spectral function also displays a spike at ω = 0 at the second

kink in the free energy, i.e., χ0 = 0.99973885. Hence it appears that the second lowest

quasinormal mode becomes unstable at this point. It is natural to conjecture then that

each time the free energy turns, a new ‘tachyonic’ mode appears in the scalar spectrum. In

fact, the spectrum of scalar mesons on the Minkowski branch was found to display precisely

this behaviour [10].

Again the spectral functions of mesonic operators which we calculated exhibited a

number of interesting features, which had a clear interpretation in terms of the spectrum
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of quasinormal modes. It would, of course, be interesting to confirm these behaviours by

a detailed investigation of the quasinormal modes, as was begun in [36]. In the present

paper, the spectral functions were only calculated for zero spatial momentum for computa-

tional simplicity. So another natural extension of this work is to consider the behaviour at

nonvanishing spatial momentum. In particular, the spectral functions for general time-like

and light-like four-momentum can be used to calculate photon and dilepton production

rates, respectively [13]. An analysis of these results for the present N = 2 gauge theory

has been made recently [41].

The other main result of this paper was the calculation of the diffusion constant for

the quark charge. We used a number of techniques developed for bulk black holes in

the calculation of the R-charge diffusion constant in the N = 4 theory: the membrane

paradigm method [17], the Green-Kubo formula [16] (which for us relied on previous studies

of this system at finite quark density [38]), and the lowest quasinormal frequency [17]. It

is gratifying that as demanded by the internal consistency of the holographic framework,

all three of these independent calculations yield the same results [42], which are shown in

figure 12.

At very high temperatures (i.e., T/M̄ ≫ 1), the diffusion constant approaches

2πD T = 1, which as discussed above matches the R-charge diffusion constant for the

N = 4 super-Yang-Mills theory [17]. As T/M̄ decreases, the product D T decreases. In-

tuitively, we might understand this result as the rate of diffusion decreasing at a fixed

temperature when the quark mass is increased. In fact, the decrease is remarkably small

at first, e.g., 2πD T = 0.9 at T/M̄ ≃ 1.5. However, figure 12 then shows a dramatic

decline as we approach the phase transition at T/M̄ = 0.7658. At the phase transition,

2πD T ≃ 0.226, but if we continue following the black hole branch it appears that D T con-

tinues to decrease and would vanish at the critical embedding. The membrane paradigm

approach to calculating D, as described in section 5.1, provides a straightforward under-

standing of this vanishing from the bulk perspective. Examining the expression in eq. (5.1),

we see that in the critical limit, the integral remains finite but the prefactor vanishes be-

cause
√−g → 0. Hence the dominant effect which causes D to decrease is the reduction of

the effective horizon area of the brane geometry (3.5) as we approach the critical embed-

ding. That is, (1−χ2
0) → 0 in advancing toward the critical embedding. Further, this area

vanishes precisely at the critical embedding confirming that D should vanish there.

We have considered the N = 2 gauge theory to have Nf flavours of quarks. Hence it

is worth noting that the results for the quark diffusion constant in the present holographic

framework are independent of both Nf and Nc. Of course, the same independence of Nc

was seen with the R-charge [17]. This must certainly arise because we are working in the

limit of large Nc and large λ.

There has also been a great deal of interest in the diffusion of ‘heavy quarks’ in holo-

graphic theories recently [46, 43, 44] — see also [45] and the references therein. In the

present context, this simply refers to the quark diffusion constant in the low temperature

phase where the D7-branes only approach to some finite distance away from the black hole

horizon. In the low temperature or Minkowski embedding phase, a quark is represented by

a fundamental string stretching between the D7-brane and the horizon. As such, a heavy
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quark is holographically represented by a macroscopic object (on a similar footing with the

probe D7-branes) and classically this object will remain at rest (i.e., it does not ‘diffuse’).

It is only when semiclassical effects are taken into account that the heavy quarks diffuse

through the appearance of Hawking radiation from the effective black hole metric induced

on the string worldsheet [43]. This process should be contrasted with the diffusion process

in the high temperature phase which we have been considering here. As stressed above,

in this phase the induced metric on the D7-brane is a black hole metric and so if quark

number is injected into the system, the holographic description of diffusion is simply the

classical process of the corresponding worldvolume excitations falling towards the event

horizon. Given these two disparate descriptions, it is not surprising that the diffusion con-

stant takes a qualitatively and quantitatively different form in the two phases. In the low

temperature phase, the diffusion constant is governed by the heavy quark result [46, 43]13

2π D T =
√

8/λ . (6.1)

On the other hand, after the transition to the high temperature phase, we found above that

2π D T = O(1). Note that the holographic analysis applies for strong ’t Hooft coupling

(i.e., λ ≫ 1) and so these results show the expected suppression of quark diffusion in the

low temperature phase.

We comment on a possible puzzle with the above description of the diffusion of heavy

quarks as due to semiclassical Hawking radiation. As such, the diffusion constant would

be expected to vanish in the limit ~ → 0 for the bulk theory. Now the standard AdS/CFT

dictionary would associate Planck’s constant ~ in the bulk supergravity with 1/Nc in the

dual gauge theory [4]. However, above, we see the result (6.1) is seen to be independent

of Nc and D certainly does not vanish in the limit Nc → ∞. The resolution of this puzzle

is that we have misidentified the correct ‘semiclassical’ nature of the diffusion process

here. Above we observed that the heavy quarks diffuse because of the appearance of

Hawking radiation in the effective field theory on the string worldsheet dual to such heavy

quark. That is, the ‘fields’ on the worldsheet are the transverse coordinates describing the

embedding of the string and so fluctuations in these fields (arising from Hawking radiation)

corresponds to fluctuations in the position of the quark (i.e., diffusion of the quark). Now as

usual, ~ for the worldsheet theory is identified with the inverse string tension, α′ = ℓ2
s . More

correctly, the dimensionless ~ in the nonlinear sigma model one the worldsheet is identified

with the ratio of α′ and the background curvature scale, i.e., ~ws ≃ ℓ2
s /L

2 ≃ 1/
√

λ. Now

we see this physical picture matches precisely with the calculated result (6.1) and the limit

λ → ∞ is the semiclassical limit on the string worldsheet.

The results for the diffusion constant in both the high and low temperature phases are

combined in figure 14, where 2πD T is shown as a function of λ (for fixed Mq/T ). The thick

black curve shows a canonical result for the N = 2 gauge theory, which we are displaying

for Mq/T = 200. The diffusion constant starts at very large values on the left in nearly

13Note we present this result with the same normalisation for the ’t Hooft coupling used throughout this

paper. Ref. [46] uses a convention such that λ̃ = 2λ. This difference arises from the implicit normalisation

of the U(Nc) generators: Tr(Ta Tb) = d δab. The standard field theory convention used in [46] is d = 1/2

while our choice is d = 1, as is prevalent in the D-brane literature.
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Figure 14: Sketch of 2π D T versus λ for a canonical N = 2 gauge theory with Mq/T = 200.

To the far left, we have the perturbative regime [47], which crosses over to the ‘heavy’ quark

behaviour (6.1). Above the phase transition to the black hole phase at λ ≃ 9.4 × 104, the curve

reflects the ‘light’ quark behaviour of figure 12. The light quark curves are also shown for Mq/T = 2,

6, and 20. The horizontal dotted line marks the value of 2π D T for the ‘light’ quarks at the phase

transition.

perturbative results. The dashed ‘perturbative’ line is the extrapolation of the perturbative

calculation of [47] for N = 4 super-Yang-Mills at large Nc. As the curve shows, we expect

D T to make a transition to the λ−1/2 behaviour of heavy quarks in the low temperature

phase. If the quark mass was infinite, this behaviour would extend out to infinite ’t Hooft

coupling. However, for a finite mass, increasing λ eventually takes the system to the high

temperature phase. It would be interesting to understand the corrections to the heavy

quark result (6.1), as we approach the phase transition. For Mq/T = 200, the latter occurs

at λ ≃ 9.4× 104 [7, 10]. At this first order phase transition, 2π D T jumps discontinuously

up to the ‘light quark’ curve at 2π D T = 0.226 and it quickly reaches the asymptotic value

of 1 as λ continues to increase.

Much of the recent interest in holographic calculations of the diffusion constant was

generated by the possibility to compare these strong coupling results with experimental

results for the QCD quark-gluon plasma measured at RHIC [48]. It is interesting then to

place the RHIC results in the context of the phenomenology of the N = 2 gauge theory

studied here. The bar labeled RHIC corresponds to αstrong = 0.5 (or λ = 3π) and the

range 2π D T = 3 ∼ 12, which is used in fitting the observed nuclear modification factor

and elliptic flow amplitude for heavy (charm) quarks — see [48] for details. This value of

the ’t Hooft coupling is well away from the light quark behaviour of our canonical theory

but also lies in an intermediate regime between the heavy quark and perturbative regimes.

Hence a direct comparison of either approach for the N = 2 theory to the experimental data

for QCD is difficult [47, 49]. We emphasize that in this intermediate region our canonical
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curve is simply an ‘artistic’ impression of the cross-over between these two regimes.

For the canonical theory, we chose Mq/T = 200 so that the phase transition between

the low and high temperature regimes took place for a value of λ that we could confidently

characterize as strong coupling. So we extend our discussion of RHIC results by noting

that the charm quark has a mass of roughly 1500 MeV while the temperatures achieved

in the RHIC collisions are in the regime 250 MeV. Hence in these experiments, we are

considering Mq/T ≃ 6. As illustrated in figure 14, the effect of reducing this ratio is to

slide the light quark curve to the left. That is, the phase transition occurs at smaller and

smaller values of λ, e.g., λc ≃ 85 for Mq/T ≃ 6. However, it seems that this critical value

is still well away from the value of the coupling relevant for RHIC. Further it seems that

the same will still be true for charm quarks even at the higher temperatures that might be

achieved in the future at the LHC. Thus it is unlikely that a dramatic jump in the diffusion

constant, such as that seen for our canonical theory, will appear in these experiments. It

is noteworthy that in any event, the experimentally favoured values of the heavy quark

diffusion constant are in fact above those calculated in the high temperature phase. Hence

it would seem that a QCD phase transition would be characterized by a sudden decrease

rather than a sudden increase in the diffusion constant.

While our results for the diffusion constant do not seem relevant for ‘heavy quarks’,

they might be considered as that for ‘light quarks’ in QCD. Note that our holographic

model gave 2π D T ≤ 1 where the effect of a finite quark mass was to give a slight (less

than order one) reduction below the asymptotic value of 1. Appendix E extends the

computation of the diffusion constant described in section 5.1 to more general holographic

theories. In particular, figure 18 shows the results for the D4/D6-brane system, which is

the basis for the construction of one holographic model which mimics QCD at large Nc [50].

The results are similar to those above with 2π D T ≤ 3/2 with finite mass effects giving

a small reduction from the asymptotic value. Another interesting holographic model of

a QCD-like theory comes from introducing D8 and anti-D8 probe branes in a D4-brane

background [51]. The resulting diffusion constant is simply 2π D T = 1. In this model,

the current quark mass is fixed vanish and so no finite mass effects appear. We might also

recall the results for the R-charge diffusion constants 2π D T = 1 and 3/4, for the near-

extremal D3- and D4-brane backgrounds [17]. Hence in all these cases then, we find that the

calculations yield 2π D T = O(1). This might suggest that in QCD, the diffusion constant

associated with the light quarks falls dramatically at strong coupling, as compared to the

perturbative results [52], but that they should saturate around this level. One might note

then that these diffusion constants would be smaller than for heavy quarks at presently

accessible energies but not much smaller. However, we must recall that these calculations

are all performed at large λ and large Nc (with Nf/Nc ≪ 1) and so it would of course be

interesting to understand the corrections to these results at finite λ and finite Nc.

In the present study, we focussed on calculating the diffusion constant for the overall

quark charge. Of course, with Nf flavours of quarks with identical masses, the N = 2

gauge theory has a global U(Nf) flavour symmetry and in the dual gravity description,

the worldvolume theory of the D7-brane contains a nonabelian U(Nf) gauge field. Our

calculations have only considered the diagonal U(1) component of this gauge field. However,
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as noted in appendix A, one can easily examine the nonabelian SU(Nf) flavour currents

with the corresponding components of the worldvolume gauge field — see, e.g., eq. (A.6).

Now in principle, we would describe the diffusion of the full set of flavour currents with

a diffusion matrix Dab, rather than a single constant. However, our calculations of the

diffusion constant in section 5 only relied on knowing the quadratic action for the dual

gauge field and hence the nonabelian character of the gauge fields would play no role.

Hence the diffusion matrix is, in fact, diagonal: Dab = D δab where D is precisely the

constant determined for the U(1) charge. On general grounds, this is of course the expected

result for the N = 2 gauge theory in the absence of any chemical potentials. With a

nonvanishing chemical potential, the diffusion matrix will not take this simple form [53].

Similar comments to those above also apply for extending our calculations of the spectral

function to operators that are no longer SU(Nf) singlets.
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A. Holographic dictionary

In sections 4.1 and 4.2, we focussed on three worldvolume fields: the gauge field Aµ and the

embedding coordinates χ and φ. We made use of the fact that the asymptotic behaviour

of these D7-brane fields has a direct translation in terms of hypermultiplet operators in the

gauge theory. In this appendix, we elucidate this holographic dictionary in more detail. Our

discussion provides more detail on the pseudoscalar operator since the other two operators

have already been considered in some detail in [10, 38].

Let us remind the reader that a hypermultiplet consists of two Weyl fermions ψ, ψ̃ and

two complex scalars q, q̃. Of these, ψ and q transform in the fundamental of the SU(Nc)

gauge group, while ψ̃ and q̃ transform in the antifundamental. Further, with Nf flavours

(of equal mass), the hypermultiplets transform under a global U(Nf) ≃ SU(Nf) × U(1)q

symmetry. The charges of the fields under the diagonal U(1)q are +1 for ψ and q and –1

for ψ̃ and q̃. Hence the U(1)q charge naturally counts the net number of quarks in a given

state. Here and below, we follow the notation of [54].

The operators dual to Aµ, χ and φ can be determined by considering the interactions

of the open strings on the D3/D7 array (3.1) before the decoupling limit [55], in analogy
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with the closed strings. Such an exercise leads to the following operators:

Aµ ↔ Jµ
q = ψ̄σ̄µψ + ψ̃σµψ̃† − i

(

q†Dµq − (Dµq)†q
)

− i
(

q̃ (Dµq̃)† −Dµq̃ q̃†
)

, (A.1)

χ ↔ Om = iψ̃ψ + q̃(Mq +
√

2Φ1)q̃† + q†(Mq +
√

2Φ1)q + h.c. , (A.2)

φ ↔ Oφ = ψ̃ψ + i
√

2 q̃ Φ1 q̃† + i
√

2 q† Φ1 q + h.c. . (A.3)

Note that Φ1, a complex scalar in the N = 4 supermultiplet, as well as Mq, appear in the

scalar terms after solving for the auxiliary field constraints within the full coupled theory.

Note that both these operators have conformal dimension14 ∆ = 3, which matches the

standard prescription for the powers of ρ appearing in the asymptotic behaviour of the

fields — see below.

Let us comment on the derivation of Oφ. The mass term for the hypermultiplet fields

originates from the following superpotential term

i
√

2

∫

d2θ
(

Q̃Φ7,7 Q − h.c.
)

(A.4)

where Q̃ and Q are chiral superfields containing (q̃, ψ̃) and (q, ψ), respectively. These

hypermultiplet fields appear as ground states of the 3-7 and 7-3 strings while, as the

subscript indicates, the superfield Φ7,7 describes a particular set of massless modes in the

7-7 string sector. In particular, the lowest component of Φ7,7 is a complex scalar describing

the transverse fluctuations of the D7-brane position, i.e.,

Φ7,7 =
1√
2

(

X8 + iX9

2πℓ2
s

)

+ · · · . (A.5)

for the orientation in eq. (3.1). After the decoupling limit, this is no longer a dynamical

field in the gauge theory but its expectation value sets the mass of the hypermultiplets,

i.e., 〈Φ7,7〉 = Mq/
√

2. One sees from eq. (A.5) that the geometric angle φ appearing in our

construction of the D7-brane embeddings in section 3 corresponds precisely to the phase

of the complex field Φ7,7. Hence in deriving Oφ, we consider a phase rotation with the

given expectation value for Φ7,7 in the Lagrangian (A.4). The resulting variation yields

δL = δφMq Oφ and so we have divided by the factor of Mq in defining the operator given

in eq. (A.3).

Recall that the full flavour symmetry is U(Nf), which of course matches the world-

volume gauge symmetry of the D7-branes. The current Jµ
q is the conserved current corre-

sponding to the diagonal U(1)q of this global symmetry, i.e., J t
q is the quark charge density.

Our discussion can easily extended to the SU(Nf) symmetry by considering the nonAbelian

gauge fields on the D7-brane. The corresponding flavour currents would be

Aa
µ ↔ (Ja)µ = (T a)i

j
[

ψ̄iσ̄µψj + ψ̃iσµψ̃†
j − i

(

q†iDµqj − (Dµq)†iqj

)

(A.6)

−i
(

q̃ i (Dµq̃)†j −Dµq̃ i q̃†j

)]

,

14This dimension applies in the UV where the effects of quark mass are negligible and the theory becomes

conformal.
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where T a are (Hermitian) generators of SU(Nf) and we have restored explicit flavour indices

on the fields. With the operators Om and Oφ, we have also focussed on the SU(Nf) neutral

terms but it would be straightforward to extend these to a more general discussion. For

example, in general Φ7,7 transforms in the adjoint of U(Nf) and so one can easily chose a

more elaborate mass matrix rather than one proportional to the identity as above.

Recall the equation of motion (3.7) for χ implies that asymptotically

χ =
m

ρ
+

c

ρ3
+ · · · . (A.7)

The dimensionless constants m and c are related to the quark mass and condensate as [10]:

Mq =
1

2

√
λT m , (A.8)

〈Om〉 = −1

8

√
λNf NcT

3 c . (A.9)

As presented here, this dictionary was established for a constant coefficient (i.e., the mass)

and uniform expectation value of the operator Om. However, the same relationships also ap-

ply in considering correlators where Mq is shifted with a general space- and time-dependent

coefficient or source µ(x). In section 4.2, we express the relevant correlators in terms of

variations δθ(x, ρ) (or its Fourier transform along the xµ directions). Given that χ ≡ cos θ,

we have δθ ≃ −δχ asymptotically where χ approaches zero. Hence, as confirmed from

eq. (4.44), δθ has the following the asymptotic behaviour:

δθ(x, ρ) =
δθ0(x)

ρ
+

Θ(x)

ρ3
+ · · · , (A.10)

The source term is related to the first coefficient above as in eq. (A.8) (up to a sign):

µ(x) = −1
2

√
λT δθ0(x). Similarly the induced expectation value and Θ(x) are related as

in eq. (A.9), again up to an overall sign.

Ref. [38] investigated the present holographic theory at finite quark density and so

established a similar dictionary for the (time component of the) worldvolume gauge field.

With the asymptotic behaviour

At = µ − σ̃

ρ
+ · · · , (A.11)

it was found that µ is precisely the chemical potential or the coefficient of the charge density

operator J t
q and the quark density was given by

nq ≡ 〈J t
q 〉 =

1

4
NfNc T 2 σ̃ . (A.12)

Again these relations were originally established for a constant chemical potential and

uniform quark density but they still apply for more general configurations. In particular

for the correlators of section 4.1, we consider more general gauge field configurations with

asymptotic behaviour

Aµ = Σµ(x) +
σµ(x)

ρ
+ · · · . (A.13)
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In this case, Σµ corresponds to the (space- and time-dependent) coefficient of the current

operator Jµ
q and the induced expectation values are given by

〈Jµ
q (x)〉 =

1

4
NfNc T 2 σµ(x) . (A.14)

Note that here the index on σµ is raised with ηµν , the inverse metric in the CFT.15

Now we would like to turn to the holographic dictionary for the δφ modes. From the

equation of motion (4.43) and the asymptotic behaviour of χ given in eq. (A.7), we can

determine that δφ has the following asymptotic behaviour

δφ(x, ρ) = δφ0(x) +
Φ(x)

ρ2
+ · · · . (A.15)

From eq. (A.5), we saw that the geometric angle φ appearing in the D7-brane embeddings

corresponds precisely to the phase of the complex field Φ7,7. Hence δφ0 corresponds to

a fluctuation in the phase of the hypermultiplet mass term. As usual, the dimensionless

constant Φ is proportional to the induced expectation value of Oφ but we would still need

establish the precise constant of proportionality.

To establish the latter relationship, it is natural to frame the discussion in terms of

the thermal partition function — see [38], for example.16 The source potential δφ0 enters

the partition function as

exp [−β F (β, δφ0)] ≡
∑

exp

[

−β

∫

d3x (H− δφ0 Mq Oφ)

]

(A.16)

where a sum over all states is denoted on the right hand side and β denotes the inverse

temperature. Of course, F (β, δφ0) and H are the free energy and Hamiltonian densities,

respectively. To begin, we note that, as can be seen from eq. (A.16),

δF

δ(δφ0)
= −Mq 〈Oφ 〉 . (A.17)

To compare to the string description, we turn to the semiclassical analysis of the Euclidean

supergravity path integral — see [10, 38], for example. Here the on-shell action gives the

leading contribution to the free energy, i.e., IE = β F . Hence to compare to eq. (A.17), we

need to evaluate the change of the on-shell D7-brane action induced by a variation δφ0.

The background solution for this field is simply φ = 0 and so to linear order the action

is invariant. Hence we can focus on the appropriate Euclidean version of the quadratic

action (4.45) and the variation yields a boundary term, as in eq. (4.47),

δF =
π2

4
NfTD7r0

4

∫

d3x δφ0

[

ρ5f f̃(1 − χ2)2χ2

√

1 − χ2 + ρ2χ̇2
∂ρδφ

]

ρ→∞

= −π2

2
NfTD7r0

4m2

∫

d3xΦ(x) δφ0 . (A.18)

15Note that while the calculation of the spectral function in section 4.1 is presented in terms of the

gauge-invariant field strengths Fµν , this was simply choice of convenience and the final spectral function

corresponds to that for current in eq. (A.1).
16In principle then this discussion only concerns space- but not time-dependent sources. However, the

following results apply for the general case including time dependence.
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where the last expression uses the asymptotic behaviour of both χ and δφ from eqs. (A.7)

and (A.15), respectively. Comparing eqs. (A.17) and (A.18), we find

〈Oφ 〉 =
π2

2Mq

NfTD7r0
4m2 Φ(x) =

1

8
NfNc MqT

2 Φ(x) , (A.19)

which completes the holographic dictionary for the δφ modes.

Above we have identified the ℓ = 0 modes of the worldvolume fields with operators in

the dual field theory. Of course, a similar dictionary relates the higher-ℓ modes to dimension

ℓ + 3 operators Oℓ in the gauge theory. Qualitatively, we may say that the latter are

constructed with products of ℓ adjoint scalar fields ‘sandwiched’ between two fundamental

fields in the above operators — see e.g., [11, 56]. For example, the expression (A.4) for

Oφ would be generalized to

Oℓ
φ ∼

∫

d2θ Q̃ Φ7,7 (Φ3,3)
ℓ Q (A.20)

where (Φ3,3)
ℓ represents a traceless combination of scalar superfields in the adjoint hyper-

multiplet.17 As is often the case in the AdS/CFT correspondence and its generalisations,

the precise matching between normalisations in the field theory and string theory is diffi-

cult, mainly due to the fact that one would need the full D3/D7 brane action before taking

the decoupling limit to determine the couplings of the bulk fields to field theory operators.

However, to study the spectral functions overall numerical constants need not concern

us and we simply choose a convenient normalisation which is consistent with holography.

However, we must ensure that the spectral function has the proper scaling dimension (2.14).

The three equations of motion, (4.19) for the vector, (4.53) for the pseudoscalar, and (4.59)

for the scalar imply the asymptotic behaviour

Ψℓ = Aℓ ρℓ + Bℓ ρ−ℓ−2 , (A.21)

for some constants Aℓ, Bℓ where Ψℓ = Eℓ
x, δφℓ, ρδθℓ. In order to obtain the correct scaling

of the spectral function, we change to the standard dimensionful coordinates z = L2/r =√
2/πTρ used in the usual AdS/CFT prescriptions for computing correlation functions —

see, e.g., [4]. In these coordinates, (A.21) becomes

δΨℓ = Ãℓ z−ℓ + B̃ℓ zℓ+2 . (A.22)

Hence, for z → 0 (the boundary), we expect the leading behaviour Ψ ∼ z−ℓ. Taking a

cutoff at small z = ǫ, this implies that we should take

Ψℓ(ρ, k) = Ψ0
ℓ(k)ǫ−ℓ Φℓ(z)

Φℓ(ǫ)
= Ψ0

ℓ(k)
(πT ρ∞)ℓ

2ℓ/2

Φℓ(ρ)

Φℓ(ρ∞)
, (A.23)

where Φℓ represents Eℓ,k for the vector, Pℓ,k for the pseudoscalar, and ρRℓ,k for the scalar.

As we will see in the next section, eq. (A.23) ensures that the spectral functions have the

correct asymptotic scaling (2.14) appropriate for an operator of dimension ∆ = ℓ + 3.

17Hence in this expression (A.20), the fundamental fields have an implicit sum of over the global U(Nf)

indices with Φ7,7 and the gauge U(Nc) indices with (Φ3,3)
ℓ.
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B. Spectral function for scalar meson at T = 0

In the low temperature phase of the D3/D7 brane theory (in the large-Nc limit), we expect

the scalar spectral function to be a series of δ-functions positioned at mass eigenvalues of

the corresponding mesons. In this appendix, we explicitly demonstrate this expectation

by calculating the scalar spectral function at zero temperature. The mesons and their

spectrum in this theory at T = 0 were studied in detail in ref. [11].

The background geometry corresponding to the field theory at T = 0 is that of (2.15)

with r0 = 0 so that f(r) = 1, i.e., the background no longer contains a black hole.

We embed Nf D7-branes in this geometry as described by the array (3.1), at a distance

m0 = 2πℓ2
s Mq from the D3-branes. The resulting configuration is supersymmetric with

eight supercharges preserved. Using spherical polar coordinates in the 4567-space with

radial coordinate ¯̺ = m0̺, the induced metric on the D7-branes is

ds2 =
m2

0

L2
(1 + ̺2)

(

−dt2 + dx2
)

+
L2

1 + ̺2

(

d̺2 + ̺2dΩ2
3

)

. (B.1)

Following the same procedure as described in section 4.2, we consider small scalar

fluctuations δR of the D7-branes about this fiducial embedding. That is, taking polar

coordinates φ and R̄ = m0R in the 89-directions, we consider φ = 0 and R̄ = m0(1 + δR).

Expanding the DBI action to quadratic order in δR, we find

S = −L2

2
TD7 Nf

∫

d8σ

√−g

1 + ̺2
gab ∂aδR ∂bδR . (B.2)

The corresponding equation of motion is

∂a

[ √−g

1 + ̺2
gab ∂bδR

]

= 0 , (B.3)

where g is the induced metric (B.1).

We take the fluctuations to be constant on the internal S3. Then integrating over the

S3 and integrating by parts, the action (B.2) becomes

S = −π2m4
0 TD7 Nf

∫

d4x
[

̺3δR ∂̺δR
]

̺→∞
. (B.4)

Expanding the fluctuation in terms of Fourier modes in the worldvolume directions, we

take δR(k, ̺) = δR0(k)Rk(̺)/Rk(̺∞) as the solution of eq. (B.3) regular at ̺ = 0 and

normalized to δR0(k) at ̺ = ̺∞. The correlation function is given by

G = 2π2m4
0 TD7 Nf

[

̺3 R−k(̺) ∂̺Rk(̺)

R−k(̺∞)Rk(̺∞)

]

̺→∞

= 2π2m4
0 TD7 Nf

[

̺3 ∂̺Rk(̺)

Rk(̺)

]

̺→∞

. (B.5)

Changing the radial coordinate from ̺ to z̄ = ̺2/(1 + ̺2) and setting kµ = (ω, 0, 0, 0),

the equation of motion (B.3) for a fluctuation with vanishing spatial momentum can be

written as

∂2
z̄Rk(z̄) +

2

z̄
∂z̄Rk(z̄) +

ω̄2

4z̄(1 − z̄)
Rk(z̄) = 0 , (B.6)
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with ω̄2 = ω2L4/m2
0. The solution regular at z̄ = 0 is given by a hypergeometric function

Rk(z̄) = 2F1

(

1

2
+

1

2

√

1 + ω̄2,
1

2
− 1

2

√

1 + ω̄2; 2; z̄

)

. (B.7)

In [11], the meson spectrum was determined by adjusting ω̄ such the this radial wavefunc-

tion vanishes asymptotically as z̄ → 1. Hence the correlator (B.5) has a series of poles

positioned precisely at the mass eigenvalues of the meson spectrum. The imaginary part

of the correlator will then come from deforming the integration contour for ω into the

complex plane, in the usual way. The difference between various types of correlators (e.g.,

retarded, advanced, Feynman) then comes from the precise choice of this contour.

With the solution in eq. (B.7), the correlator (B.5) becomes18

G =
2π2 m4

0 TD7 Nf

M2
q

ω̄2

[

ψ

(

1

2
+

1

2

√

1 + ω̄2

)

− π

2
tan

π
√

1 + ω̄2

2

]

, (B.8)

where we dropped contact terms. As indicated above, the correlator (B.8) has poles at

ω2
n = 4n(n + 1)m2

0/L
4, n = 1, 2, . . ., corresponding to the meson spectrum found in [11].

Using the expansion

π

4a
tan

πa

2
=

∞
∑

n=0

1

(2n + 1)2 − a2

and Sokhotsky’s formula

lim
ǫ→0

1

x ± iǫ
= ∓iπδ(x) + P

(

1

x

)

,

we find

R = −2 Im G =
NfNc

π

∞
∑

n=1

ω2
n

√

1 + ω̄2
n δ

(

ω̄2 − ω̄2
n

)

. (B.9)

Since

δ
(

ω̄2 − ω̄2
n

)

=
δ (ω̄ − ω̄n) + δ (ω̄ + ω̄n)

2ω̄n
, (B.10)

the spectral function for ω ≥ 0 can be expressed as

R =
NfNc

2π

∞
∑

n=1

ω2
n

√

1 +
1

ω̄2
n

δ (ω̄ − ω̄n) . (B.11)

This expression confirms our expectations for the spectral function in the low temperature

phase of the theory, illustrated in figure 2a: the spectral function is a sum of δ-functions

positioned at the meson mass eigenvalues. Of course, the same is true in the vector and

pseudoscalar channels (as well as for ℓ > 0 in any of the channels). Here we have explicitly

calculated the spectral function only for T = 0 because we can analytically solve for the

radial profile of the fluctuations. However, for the general case with 0 < T < Tfund, the

calculation is similar and the spectral functions again would take the form of a sum of

δ-functions positioned at the meson masses.

18In order to obtain the appropriate normalization we must multiply G by 1/M2
q — see section 4.2.
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For large values of ω (at which large n is relevant), the above result (B.11) can be

written as

R ∼ NfNcω
2

4π

∑

n

∆ω̄n δ (ω̄ − ω̄n) . (B.12)

where ∆ω̄n = ω̄n+1 − ω̄n ≃ 2 is the spacing between delta functions for large n. Note that

the factor NfNcω
2/4π is precisely the high frequency asymptotics found for the ℓ = 0 spec-

tral functions in appendix C — see eq. (C.7). With the appropriate choice of coordinates,

the radial equation in appendix C takes the same form as here, however, the boundary

conditions chosen there for small radii assume a black hole embedding and naturally pro-

duce a complex result for the radial profile. This can be contrasted with the (naively) real

result (B.7) for the Minkowski embeddings here. However, eq. (B.12) shows that if we ex-

amine the low temperature spectral function (B.11) with low resolution on the scale of the

spacing ∆ω̄n, the δ-functions in the spectral function are averaged out and we reproduce

the same high frequency tail as for the black hole embeddings.

C. Spectral function high frequency asymptotics

In this section we find expressions for the vector, pseudoscalar and scalar spectral functions

in the high frequency limit, i.e., ω much larger than all scales: ω ≫ T,Mq. Note that in a

sense this limit is equivalent to taking the limit of zero temperature and quark mass.

The spectral functions, R̃θℓ
(ω), R̃φℓ

(ω), Rℓ(ω), are collectively denoted by Rℓ
s(ω) here

and are defined as

Rℓ
s = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2 Im

[

ρ3+2ℓ ∂ρΦℓ

Φℓ

]

ρ→∞

, (C.1)

where Φℓ = ρRℓ,k,Pℓ,k, Eℓ,k for the scalar, pseudoscalar, and vector fluctuations, respec-

tively. The desired limit is achieved by considering both ρ → ∞ and w2 − q2 → +∞. In

this limit, the embedding function is χ ∼ m/ρ, and the three equations of motion, (4.26)

for Ek, (4.59) for Rk, and (4.53) for Pk, reduce to

∂2
ρΦℓ +

3

ρ
∂ρΦℓ −

[

ℓ(ℓ + 2)

ρ2
− 8(w2 − q2)

ρ4

]

Φℓ = 0. (C.2)

Changing variables first from ρ to the ‘standard’ radial coordinate r using (3.2) (which

becomes r = ρr0/
√

2 asymptotically) and then to z = L2/r, we obtain

Φ′′
ℓ (z) − 1

z
Φ′

ℓ(z) −
(

ℓ(ℓ + 2)

z2
+ k2

)

Φℓ(z) = 0 , (C.3)

where k2 = −ω2 + q2. For timelike momenta, the solution satisfying the incoming wave

boundary condition at z = ∞ (the horizon in the zero temperature limit) can be written

in terms of the Hankel function of the first kind,

Φ = zH
(1)
ℓ+1(|k|z) , (C.4)
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assuming ω > 0 [15]. The spectral function then becomes

Rs =
NfNc

2π2
Im

[

lim
ǫ→0

Φ′(ǫ)

ǫ2ℓ+1Φ(ǫ)

]

. (C.5)

For ℓ = 0, this is

Rs =
NfNc

4π
(ω2 − q2)θ(ω2 − q2) sgn ω (C.6)

which for vanishing three-momentum q = 0 reduces to

Rs =
NfNcω

2

4π
(C.7)

which coincides with the high frequency asymptotics which we found for all three ℓ = 0

spectral functions in section 4. Of course, this asymptotic behaviour precisely matches

that of the analytic solution (4.33) with ℓ = 0 found for the vector modes in the massless

quark limit.

For ℓ = 1 and vanishing three-momentum q, the spectral function is

Rℓ=1
s =

NfNcω
4

16π
. (C.8)

Again, this matches the asymptotic behaviour of the analytic vector solution (4.33) for

Mq = 0 with ℓ = 1. In fact, given that these asymptotics are independent of Mq and that

we have found a common expression for all three channels, we can use eq. (4.33) to write

the general asymptotic behaviour with q = 0 as

Rℓ
s(ω, q = 0) =

NfNc

22ℓ+2π(ℓ!)2
ω2ℓ+2 . (C.9)

Hence we have produced the expected asymptotic behaviour (2.14) for an operator of

scaling dimension ∆ = ℓ + 3. Of course, the behaviour for general q is in principle given

by combining the expressions (C.4) and (C.5).

D. Effective potentials and quasinormal modes

In this section, we rewrite the equations of motion for the pseudoscalar and scalar fluctu-

ations of the D7-brane in the form of the Schroedinger equation. This can be considered

a first step towards calculating the spectrum of quasinormal modes for these fields — see,

e.g., [36]. The effective potential in each of these effective Schroedinger problems allows us

to infer certain aspects of the quasinormal spectra. In particular, we argue that tachyonic

modes appear in the scalar spectrum sufficiently close to the critical solution. The same

analysis for the vector modes gives results that are essentially identical to those found for

the pseudoscalar.
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D.1 Pseudoscalar

Considering fluctuations of the pseudoscalar, we take the general ansatz

δφ ∼ eikx P(ρ)Yℓ(S
3) , (D.1)

where Yℓ(S
3) are spherical harmonics on the S3 and kµ = (−ω, q, 0, 0). Then the pseu-

doscalar’s wave equation (4.43) can be written as

−H0

H1
∂ρ

[

H1 ∂ρP
]

+
[

q2 H2 + L2 H3

]

P = w2 P , (D.2)

with:

H0 ≡ ρ4f2

8f̃

(1−χ2)
1−χ2+ρ2χ̇2 , H1 ≡ ρ5ff̃χ2(1−χ2)2√

1−χ2+ρ2χ̇2
,

H2 ≡ f2

f̃2
, H3 ≡ ρ2f2

8f̃(1−χ2)
, L2 ≡ ℓ(ℓ + 2) .

(D.3)

Then, with the substitution P = hψ, eq. (D.2) becomes

−H0 ψ̈ − H0

(

2
ḣ

h
+

Ḣ1

H1

)

ψ̇ +

[

q2 H2 + L2 H3 − H0

(

ḧ

h
+

Ḣ1

H1

ḣ

h

)]

ψ = w2 ψ (D.4)

where, as usual, the dot denotes a derivative with respect to ρ. The first term above can

be rewritten as

−H0 ψ̈ = −
√

H0∂ρ

(

√

H0∂ρψ
)

+
1

2
Ḣ0ψ̇ = −∂2

R∗ψ +
1

2
Ḣ0 ψ̇ (D.5)

where

R∗ =

∫ ∞

ρ

dρ̃
√

H0(ρ̃)
. (D.6)

In terms of this new radial coordinate, the second derivative term takes the simple form

found in a one-dimensional Schroedinger equation. Combining eqs. (D.4) and (D.5), all of

the terms involving ψ̇ are eliminated if we choose h as

h =
H

1/4
0

H
1/2
1

. (D.7)

Hence the radial equation reduces to

−∂2
R∗ψ + Veff ψ = E ψ (D.8)

where the effective energy and potential are given by

E = w2 , Veff = q2 H2 + L2 H3 − H0

[

ḧ

h
+

Ḣ1

H1

ḣ

h

]

. (D.9)

Let us comment on the new radial coordinate. In some sense, this coordinate is like

the ‘tortoise’ radial coordinate introduced in the analysis of physics in the Schwarzschild

geometry [57]. Approaching the event horizon, i.e., as ρ → 1, H0 ≃ (ρ − 1)2 and so
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Figure 15: The effective potential (for δφ fluctuations) versus ρ for various χ0 with ℓ = 0 and

q = 0.

R∗ ∝ − log(ρ − 1) → +∞. For large ρ, H0 ≃ ρ4 and so R∗ ≃ 1/ρ → 0. Note that given

the definition in eq. (D.3), H0 is positive everywhere on the range ρ ∈ (1,∞). Hence we

are assured that R∗ is a monotonic function of ρ.

Although R∗ is the appropriate coordinate to analyse the effective Schroedinger equa-

tion (D.8), we can still gain some intuition for the problem by plotting the effective po-

tential (D.9) as a function of ρ for various different D7-brane embeddings. A summary of

results (with q, ℓ = 0) is given in figure 15. Note that for all embeddings, the effective po-

tential exhibits a large barrier in the asymptotic region, as expected for an asymptotically

AdS geometry. Further, in all cases, the effective potential vanishes at the horizon. For

small χ0, the potential is monotonically increasing with ρ. For larger χ0, a small potential

barrier develops at intermediate values of the radius. Intuitively, the latter might give rise

to metastable states in the effective Schroedinger problem.

For ℓ > 0 nonzero and q 6= 0 the results are qualitatively similar to those depicted

in figure 15. The effective potential vanishes at the horizon and grows as ρ → ∞. The

potential barrier grows most quickly for ℓ 6= 0, due to the term proportional to L2 in (D.9)

which is roughly ℓ(ℓ + 2)ρ2/8 for large ρ. For values of χ0 near 1, a small potential barrier

develops for intermediate values of the radius. Note that while a small potential barrier is

already evident for χ0 = 0.9 (with ℓ = 0 and q = 0) in figure 15, the potential barrier only

develops for larger values of χ0, e.g., χ0 > 0.99 for ℓ > 0 and/or q 6= 0.

The quasinormal modes of the pseudoscalar can be found by solving the Schroedinger

problem constructed above, with the appropriate boundary conditions. One of the bound-

ary conditions is that the pseudoscalar should have only an incoming wave component at

the horizon, i.e., ρ → 1 or R∗ → ∞. Given the ansatz (D.1), we are thus looking for solu-

tions with19 ψ ∝ exp(iwR∗). For large ρ or small R∗ where the effective potential diverges,

we demand that the wavefunction vanish. Generically, these boundary conditions lead to

complex eigenvalues for the effective energy E , which is in accord with our expectation that

19Note that taking the limit ρ → 1 in eq. (D.7) yields a simple constant for h and so we have P ∝ ψ as

we approach the horizon.

– 53 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
1

the quasinormal frequencies have the form [58, 59]

w = ±Ω − iΓ , (D.10)

with Ω,Γ > 0. Note that Γ > 0 ensures that the quasinormal excitations decay in time, as

can be seen from the ansatz (D.1). However, given that

E = w2 = (Ω2 − Γ2) ∓ 2iΩ Γ , (D.11)

some translation is required to use our intuition for the Schroedinger problem to infer

general characteristics of the quasinormal spectrum. Note that as the sign of Im(E) is

not fixed, we are implicitly admitting energy eigenvalues which would correspond to both

decaying and growing wavefunctions in the effective Schroedinger problem. However, this

Schroedinger problem is purely an auxiliary tool and so one should not ascribe any physical

significance to this observation.

Above, we observed that for small χ0, the effective potential rises monotonically from

zero as we move away from the horizon towards larger ρ. Hence we would infer that

Re(E) > 0 or Ω > Γ. Further we should not expect any suppression of Im(E), i.e.,

Im(E) ∼ Re(E), which means that we should still expect to be Ω and Γ to be the same

order of magnitude in this regime. This intuition would then suggest the absence of any

interesting structure in the corresponding spectral functions, as the quasinormal frequencies

should be far from the real axis. However, as noted above, a small potential barrier appears

at intermediate values of R∗ (or rho) as χ0 approaches one. Intuitively, then one might

expect to find long-lived states with Re(E) ≫ Im(E) and Re(E) ∼ Veff(well), i.e., Re(E)

would be roughly given by the height of the potential in this intermediate potential well.

From eq. (D.11), this requires Ω ≫ Γ with Ω finite and so would correspond to quasinormal

frequencies approaching the real axis. Hence we would expect the formation of peaks in the

spectral function in this regime, as discussed in section 2. Of course, this intuitive picture

developed from the effective potential matches the behaviour of the spectral functions found

in section 4.2.1. We emphasize, however, that this intuition only gives a very rough picture

of the quasinormal spectrum and it would be interesting to develop more detailed picture

with a full calculation.

As mentioned above, the results for the effective potential for the vector fluctuations

are essentially the same as for the pseudoscalar and hence the quasinormal spectrum should

also be similar. We saw in section 4.1 that the behaviour of the vector spectral functions

is very similar to those for the pseudoscalar.

D.2 Scalar

With the ansatz δθ ∼ eikx R(ρ)Yℓ(S
3)), the scalar wave equation (4.44) can be written as

−H0

H1
∂ρ

[

H1 ∂ρR
]

+
[

q2 H2 + (ℓ + 3)(ℓ − 1)H3

]

R = w2 R . (D.12)

where H0, H2 and H3 are the same as defined in eq. (D.3), while we must redefine the

following:

H1 ≡ ρ5f f̃(1 − χ2)3

(1 − χ2 + ρ2χ̇2)3/2
, L2 ≡ (ℓ + 3)(ℓ − 1) . (D.13)
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Figure 16: The effective potential for the scalar field (δθ) versus ρ for various χ0 with ℓ = 0 and

k = 0.

Since eq. (D.12) has the same form as eq. (D.2), we can use precisely the same steps

as above to cast this equation for the scalar fluctuations into the form of a Schroedinger

equation. That is, taking R = hψ with h = H
1/4
0 /H

1/2
1 and defining the radial coordi-

nate (D.6), eq. (D.12) takes the form of the Schroedinger equation (D.8) with the effective

energy and potential given by (D.9). Examining the effective potential to gain some intu-

ition for the physics, we find: Again for all embeddings, there is a large potential barrier

in the asymptotic region and the effective potential vanishes at the horizon. For embed-

dings of the D7-branes with 0 ≤ χ0 < 0.7, figure 16 shows that the effective potential is a

monotonically increasing function of ρ. For ℓ = 0 and q = 0, once χ0 & 0.7, the potential

develops a negative well near the horizon. As χ0 increases towards 1, this well near ρ ≃ 1

becomes deeper and wider. Note that χ0 ≃ 0.9621 and χ0 ≃ 0.99973885 correspond to

the first and second kinks, respectively, in a plot of the free energy versus temperature

— see figure 4. For any modes with ℓ > 0, one finds that there is never a region where

the effective potential becomes negative, however, for χ0 near 1 the potential develops a

small barrier near the horizon. For nonvanishing spatial momentum (q 6= 0), the effective

potential exhibits a negative well near the horizon for values of χ0 near 1. However, the

well is neither as deep nor as wide as that for q = 0.

Certainly, the most interesting feature of the effective potential for the scalar is the

negative potential well which develops and grows as χ0 → 1. One would expect that if this

negative well grows large enough, it will be able to support a ‘bound’ state with E < 0.

Actually, since such a state would still see a finite potential barrier between the center of

the well and the horizon, it would still be a long-lived state. Using a WKB approximation,

we can estimate that a (zero-energy) bound state will appear for [60, 61]
(

n − 1

2

)

π =

∫ ∞

R0

dR∗
√

−Veff(R∗) (D.14)

=

∫ ρ0

1

dρ√
H0

√

−Veff(ρ) ≡ I (D.15)

where n is a positive integer and the integration is over the values of ρ for which the

potential is negative. A plot of I/π + 1/2 is given in figure 17 (for ℓ, q = 0). This quantity
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Figure 17: Plot of I/π + 1/2 versus χ0 for ℓ, q = 0.

reaches 1 for χ0 ≃ 0.98297 and 2 for χ0 ≃ 0.99986, and so we expect that the first two

bound states form at roughly these values of χ0. Below we will argue that the appearance

of these bound states can be associated with the dramatic spikes that were observed in

the scalar spectral functions in section 4.2.2. Not then that our results here do not (quite)

match the values of χ0 corresponding to the first two kinks (on the black hole branch) of the

free energy — recall that the latter correspond to χ0 = .9621 and .99973885, respectively.

However, we expect this discrepancy is likely due to the approximations inherent in the

WKB calculation.

As the effective potential is positive and monotonically increasing in the small χ0

regime, we expect the eigenfrequencies (D.10) in quasinormal spectrum will again have Ω

and Γ with the same order of magnitude. Of course, the regime with large χ0 is more

interesting because of the appearance of bound states. These modes with Re(E) < 0 are

distinguished since Γ2 > Ω2, as seen in eq. (D.11). Further as we alluded to above, the

corresponding wavefunctions are below a potential barrier as R∗ → ∞ and so must have

the form ψ ∼ exp(−|Γ|R∗) to avoid a divergence at the horizon. Given the boundary

condition there, i.e., ψ ∝ exp(iwR∗), this requires that Γ < 0 for these modes. Further

then, it follows that these exceptional modes grow rather than decay in time and so these

bound states really represent an instability of the system.

The above discussion indicates that these bound states appear when a quasinormal

frequency crosses the real axis and so their appearance should be signalled by a pole

appearing in the scalar spectral function calculated in section 4.2.2. Further, however,

we argued that as the eigenfrequency crosses the real axis, it moves from a regime where

Ω2 > Γ2 for Γ > 0 to Ω2 < Γ2 for Γ < 0. Hence at the point that Γ = 0, we must

also have Ω = 0.20 Hence we see that the quasinormal frequencies must be cross the

real axis by passing through the origin. This is, of course, precisely what was observed

in section 4.2.2, where the poles in the spectral function appeared at precisely ω = 0.

Further, the lack of much structure in the spectral function aside from these poles would

20Essentially this we are just saying that Re(E) = 0 just as the bound states form.
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indicate that the quasinormal frequencies approach the origin uniformly so that we never

find eigenfreqencies with Ω ≫ Γ. We reiterate that this discussion only gives a schematic

picture of the quasinormal spectrum and it would be interesting to develop a more detailed

picture with a full calculation [36].

E. Diffusion constants for Dp/Dq systems

This appendix extends the computation of the diffusion constant using the membrane

paradigm [17] described in section 5.1 to that for the gauge theory dual to the supergravity

configuration of a Dq-brane probe in the near-horizon black Dp-brane geometry.

The background geometry (2.15) is generalised to the near-horizon black Dp-brane

metric (in the string-frame) [3]:

ds2 = H− 1
2
(

−fdt2 + dx2
p

)

+ H
1
2

(

dr2

f
+ r2dΩ2

8−p

)

, (E.1)

where now H(r) = (L/r)7−p and f(r) = 1− (r0/r)
7−p. The background also includes non-

trivial dilaton and RR fields: eφ = H(3−p)/4, C01...p = H−1. The Hawking temperature

associated with the horizon at r = r0 is given by

T =
7 − p

4πL

(r0

L

)
5−p
2

. (E.2)

According to the gauge/gravity correspondence, string theory on this background is dual

to a supersymmetric (p + 1)-dimensional gauge theory at temperature T .

Consider placing a probe Dq-brane in the above geometry such that the probe has

d spatial directions parallel and n + 1 transverse to the background Dp-branes, so that

q = d + n + 2 and such that it intersects the horizon at r = r0. In analogy to eq. (3.2), it

is useful to introduce a new (dimensionless) radial coordinate ρ related to r via

(r0ρ)(7−p)/2 = r(7−p)/2 +

√

r7−p − r7−p
0 . (E.3)

The horizon is now positioned at ρ = 1. Implicitly, we will assume in the following that

the Dp/Dq system under consideration is T-dual to the D3/D7 one described by the ar-

ray (3.1). This choice ensures that the brane configuration is supersymmetric at zero

temperature and the probe brane embeddings should be stable in the finite temperature

background (E.1) [10].

With the coordinate (E.3), the metric and the dilaton may be written as:

ds2 =
1

2

(r0ρ

L

)(7−p)/2
[

−f2

f̃
dt2+f̃dx2

p

]

+h̃(ρ)
[

dρ2 + ρ2
(

dθ2+sin2 θdΩn+cos2 θdΩ7−p−n

)]

eφ =

(

f̃

2

)(p−3)/2
(r0ρ

L

)(7−p)(p−3)/4
,

where

f(ρ) = 1 − 1/ρ7−p, f̃(ρ) = 1/ρ7−p, h̃(ρ) = r2
0 (L/r0ρ)(7−p)/2

(

f̃ /2
)(p−3)/(7−p)

.
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Describing the probe brane profile using χ(ρ) = cos θ(ρ), the induced metric on the

Dq-brane may be written as ds2(g) = ds2(g̃) + Z(ρ)dΩ2
n, where

ds2(g̃) =
1

2

(r0ρ

L

)(7−p)/2
[

−f2

f̃
dt2 + f̃dx2

d

]

+ h̃(ρ)
1 − χ2 + ρ2χ̇2

1 − χ2
dρ2 ,

Z(ρ) = h̃(ρ) ρ2(1 − χ2) .

Using the DBI action and expanding the gauge fields to quadratic order, the relevant

portion of the action for the gauge fields is

Iq,F = −Tq(πℓ2
s )

2Ωn

∫

dt ddx dρ

√−g̃

g2
eff

F 2, g2
eff = eφZ−n/2 . (E.4)

We are now in a position to evaluate the diffusion constant using eq. (2.27) from [17]:

D =

√−g̃

g̃xx g2
eff

√

−g̃tt g̃ρρ

∣

∣

∣

∣

∣

ρ=1

∫ ∞

1
dρ

−g̃tt g̃ρρ g2
eff√−g̃

(E.5)

=
(7 − p)

2πT
2α(1 − χ2

0)
n/2

∫ ∞

1
dρ

f ρβ

f̃γ

√

1 − χ2 + ρ2χ̇2

(1 − χ2)(n+1)/2
(E.6)

where

α =
d − p

2
+

(n − 1)(p − 3)

2(7 − p)
,

β =
(7 − p)(p + n − 3 − d)

4
− n ,

γ =
(n − 1)(p − 3)

2(7 − p)
+

d + 4 − p

2
. (E.7)

One may check that for p = 3 = n = d this result reduces to that for the D3/D7 case given

in eq. (5.1).

We have also evaluated DT numerically for the D4/D6 case (p = 4, n = 2, d = 3)

and the results are plotted in figure 18. The horizontal axis is labelled by the ratio of the

temperature to the natural mass scale of the problem:

M̄ =
3

4πL

(

2πℓ2
s Mq

L

)1/2

≃ Mq

geff(Mq)
. (E.8)

Asymptotically, DT approaches 3/4π for large temperatures. As the temperature is re-

duced, DT decreases dramatically near the phase transition. The value at the phase tran-

sition is DT = .125 ≃ .785/2π. If we continue following the black hole embeddings beyond

the phase transition, DT continues to fall and it also becomes a multi-valued function of

temperature, as was seen in figure 13 for the D3/D7 system. Again, this simply reflects

the fact that multiple embeddings can be found for a single temperature in the vicinity of

the critical solution.

Note that the asymptotic value for DT does not match that for the R-charge diffusion

constant calculated for a near-extremal D4-brane result: 3/8π [17]. However, there is no
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Figure 18: The diffusion constant D times the temperature T versus temperature T/M̄ for a

D6-brane probe in the black D4-brane geometry. For large T we have DT ≃ 3/4π.

reason that these two quantities should be equal since the D6-brane does not fill the entire

D4-brane throat, i.e., one of the D4-brane worldvolume directions is transverse to the D6

probe.

The D4/D6-brane system considered above is the basis for the construction of one

holographic model which mimics QCD at large Nc [50]. Another interesting holographic

model of a QCD-like theory comes from introducing D8 and anti-D8 probe branes in a D4-

brane background [51]. This system displays an interesting phase transition related to chiral

symmetry breaking [62].21 One can again calculate the diffusion constant for the quark

charge in the high temperature phase along the lines described above. In this case, the

D8-brane wraps the entire S4 of the D4 background but otherwise fills the same directions

as the D6-branes above. After the phase transition the embeddings are much simpler

since there is no non-trivial radial profile to be considered and, further, the embedding is

temperature independent. The diffusion constant may be determined from eq. (E.6) setting

χ = 0 = χ0, p = 4 = n and d = 3. The result for the calculation is DT = 1/2π.
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